ارزیابی خطر تخریب سرزمین و شدت بیابان‌زایی با استفاده از روش فازی (مطالعه موردی: منطقه میاندهی استان خراسان رضوی)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه کاشان، ایران

2 دانشجوی دکترای گروه بیابان‌زدایی، دانشکده کویرشناسی، دانشگاه سمنان، ایران

3 دانشیار، گروه بیابان‌زدایی، دانشکده کویرشناسی، دانشگاه سمنان، ایران

چکیده

پدیده مخرب بیابان‌زایی یکی از بحران‌های جدی اکولوژیکی در این عصر محسوب می‌شود. به‌‌منظور بهبود کارایی پروژه‌های بیابان‌زدایی و خنثی‌سازی تخریب منابع طبیعی، ایجاد روش ارزیابی و پایش جامع و سامانمند که از انواع معیارها و شاخص‌ها برای حصول به نتایج واقعی بهره می‌برد، ضروری به نظر می‌رسد. راهکارها و راهبردهای ارزیابی شدت خطر بیابان‌زایی در ایران عموماً به ‌صورت بخشی‌نگر و بر مبنای نظرات کارشناسی بوده و معمولاً مدل‌های ارزیابی بر مبنای مدل‌های تصمیم‌گیری چند‌معیاره چندان موردتوجه نبوده است. در این پژوهش با استفاده از رویکرد منطق فازی به‌‌عنوان یکی از روش‌های آزموده شده و کارآمد در ارزیابی برخی معیارهای مهم در زمینه‌ تخریب و بیابان‌زایی استفاده شده است. بدین‌منظور پس از تهیه واحدهای کاری، نمونه‌های میدانی در هر واحد‌کاری برداشت شده و بعد با استفاده از روش‌های زمین‌آمار و کریجینگ اقدام به تهیه نقشه‌های رستری پیوسته اولیه در محیط GIS گردید؛ در گام بعدی با استفاده از توابع خطی عضویت لایه‌ها به لایه‌های فازی تبدیل مشخص شد. در نهایت با استفاده از عملگرهای فازی و اپراتور گاما نقشه نهایی شدت بیابان‌زایی در مقیاس صفر تا یک ارائه گردید. به‌منظور تسهیل و تفهیم بهتر نتایج، نقشه نهایی در 4 کلاس شدت کم تا شدت خیلی زیاد طبقه‌بندی شد. نتایج حاصل نشان می‌دهد تقریباً 40 درصد از عرصه مورد مطالعه در شدت بالای تخریب و 17 درصد در شدت خیلی‌زیاد قرار دارد. خاطرنشان می‌سازد طبقه‌بندی فوق در سناریوهای مختلف مدیریتی می‌تواند مورد بازبینی دوباره قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of the Hazard of Land Destroying and Severity of Desertification Using Fuzzy Method (Case Stydy: Miyandehi Region in Khorasan Razavi province)

نویسندگان [English]

  • Reza Dehghani Bidgoli 1
  • Hamidreza Koubanani 2
  • Mohammadreza Yazdani 3
  • Jamal Dashti Amirabad 2
1 Assistant Professor, Dept of Rangeland and Watershed Management, University of Kashan, Kashan, Iran
2 Ph.D Student, Depatment of Desertification, University of Semnan, Iran
3 Associate professor, Depatment of Desertification, University of Semnan, Iran
چکیده [English]

     The destructive phenomenon of desertification is one of the serious ecological crises in the present day. To improve the efficiency of combating desertification projects and inhibit natural resources destruction, it is necessary to establish a comprehensive and systematic assessment method that uses a variety of criteria and indicators to achieve actual results. Land degradation assessment strategies are generally based on expert opinions and usually evaluation models based on multi-criteria decision-making models are not very noticeable in Iran. In this study, fuzzy logic approach as one of the effective ways to assess some important criteria in the field of destruction and desertification was used. For this purpose, after the preparation of units, field samples were taken in each unit and then, using groundbreaking and kriging methods, the initial continuous lattice maps in the GIS environment were prepared. In the next step, the layers were assigned to the fuzzy layers using the linear functions. Finally, with the use of fuzzy operators and gamma operators, the final map of desertification severity was presented on a scale of zero to one. In order to facilitate better understanding of the results, the final map was classified into four classes of very low to very high severity. The obtained results show that approximately 40% of the studied area is in high severity and 17% is in very high severity. It should be noted that the above classification can be reconsidered in various managerial scenarios.

کلیدواژه‌ها [English]

  • Ecosystem degradation
  • fuzzy logic
  • linear membership function
  • Miyandehi

-  Ahmadi, H., 2006. Iranian model of desertification potential assessment in east of Esfahan. Faculty of Natural Resources, University of Tehran, 156p.

-  Alesheikh, A., Soltani, M. and Helali, H., 2002. Application of GIS in locating flood spreading areas. Journal of Geographic Research, 17(40): 38-42.

-  Allen, R. G., Tasumi, M. and Trezza, R., 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) –model. Journal of Irrigation and Drainage Engineering, ASCE, 133: 380–394.

-  Asar, Z. and Masoudi, M., 2017. Assessment of livestock pressure and its effect on desertification hazard, case study ‎area: Miyandehi Feizabad, Khorasan Razavi. Journal of Range and watershed management, 70(2): 411-421.

-  Bakhshandehmehr, L., Soltani, S. and Sepehr, A., 2013. Assessment of Present Status of Desertification and Modifying the MEDALUS Model in Segzi plain of Isfahan. Journal of Range and Watershed Management, 66(1): 27-41.

-  Camastra, F., Ciaramella, A., Giovannelli, V., Lener, M., Rastelli, M., Staiano, A. and Starace, A., 2015. A fuzzy decision system for genetically modified plant environmental risk assessment using Mamdani inference. Journal of Applied Sciences, 42 (3): 1710-1716.

-  Chen, S. and Hwang, C., 1992. Fuzzy multiple attribute decision making: Methods and Applications". Springer Verlag, Inc, 536p.

-  Ertugrul, I. and Karakasoglu, N., 2007. Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods". Journal of Expert Systems with Applications, 36: 702-715.

-  Grau, J., Anton, B. M., Tarquis, A. M., Colombo, F., Rios, L. and. Cisneros, J. M., 2010. "Mathematical model to select the optimal alternative for an integral plan to desertification and erosion control for the Chaco area in Salta Province (Argentine)". Journal of Biogeosciences Discuss, 7: 2601-2630.

-  He, y., DeSutter, T., Casey, F., Clay, D., Franzen, D. and Steele, D., 2015. Field capacity water as influenced by Na and EC: Implications for subsurface drainage. Journal of Geoderma, 246:83–88.

-  Jafari, M., Zehtabian, G.H. and Ehsani, A. H., 2013. Effect of thermal bonding and supervised classification algorithms of satellite data in making land use maps (Case study: Kashan), Iranian Journal of Range and Desert Reseach, 20 (1), 73-87.

-  Khalighi Sigaroudi, Sh., Sadeghi Sangdehi, S. A., Awsati, Kh. and Ghavidel Rahimi, Y., 2009. The Study of Drought and Wet Year Assessment models for Stations in Mazandaran province. Iranian Journal of Range and Desert Reseach, 16 (1), 44-54.

-  Khatar, M., M. R. Mosaddeghi, and Mahboubi, A. A., 2012. Water Quality Effect on Plant-Available Water and Pore Size Distribution of Two Texturally-Different Calcareous Soils, Journal of Water and Soil Science, 16(60):159-172.

-  Khosravi, H., Zehtabian, Gh., Ahmadi, R. and Azarnivand, H., 2014. Hazard Assessment of Desertification as a Result of Soil and Water Recourse Degradation in Kashan Region, Iran. Journal of Desert, 19(1): 45-55.

-  Kim, S., Rayburn, A. L., Voigt, T., Parrish, A. and Lee, D. K., 2012. Salinity effects on germination and plant growth of prairie cordgrass and switchgrass. Journal of Bioenerg Reserch, (5): 225–235.

-  Koohbanani, H. R., Dashti Amirabad, J., Nikoo, S. and Taya, A., 2017. Desertification-intensity zoning through Fuzzy-Logic Approach: a case study of Deyhook-Tabas, Iran. Journal of Environmental Erosion Research, 25(1): 35-49.

-  Nateghi, S., Zehtabian, Gh. and Ahmadi, H., 2009. Evaluation of desertification intensity in Segzi plain using IMDPA model. Journal of Rangeland & Watershed Management, 62(3): 419-430.

-  Sadeghi, M. H. and Tahmoores, M., 2013. Strategic assessment of desertification by using fuzzy TOPSIS. Journal of Science and Environmental Engineering, (1)3: 79-94.

-  Salarian, F., Ghorbani, J. and Safaeian, N. A., 2013. Vegetation changes under exclosure and livestock grazing in Chahar Bagh rangelands in Golestan province. Iranian Journal of Range and Desert Research, 20 (1), 115-129.

-  Sarkar, S., Parihar, S. M. and Dutta, A., 2016. Fuzzy risk assessment modelling of East Kolkata wetland area: a remote sensing and GIS based approach. Journal of Environmental Modelling & Software, 75: 105-118.

-  Sepehr, A., Ekhtesasi, M. R. and Almodaresi, S. A., 2012. Development of desertification indicator system base on DPSIR (Take Advantages of Fuzzy-TOPSIS). Journal of Geography and Environmental Planning Journal, 45(1), 33-50.

-  Silakhori, E., 2015. Mapping of desertification hazard intensity based on soil index using ESAs methodology in Mazinan of Sabzevar. Journal of Emergency Management, 3(2): 57-63.

-  Sobrino, J., Jiménez-Munoz, J. C. and Paolini, L., 2004. Land surface temperature retrieval from LANDSAT TM 5. Journal of Remote Sensing of Environment, 90: 434-440.

-  Tewari. S., Kulhavy, J., Rock, B. N. and Hadas, M., 2003. Remote monitoring of forest response to changed soil moisture regime due to river regulation. Journal of Forest Science, 49:.429–438.

-  United Nations Convention to Combat Desertification., 1994. United nations convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa. A/AC, 241-27, Paris, 234p.

-  Vali, A. A., Barabadi, H., Heidary, E. and Khosravi, H., 2015. Assessment of Roudab plain of Sabzevar city desertification intensity emphasizing two climate and water criteria. Journal of Desert Ecosystem Engineering, 4(8): 57-66.

-  Wang, Y., Guo, Z. and Sun, Z., 2015. Fuzzy Comprehensive evaluation-based disaster risk assessment of desertification in Horqin Sand Land, China. International Journal of Environmental Research and Public Health, 12: 1703-1725.

-  Zakerinejad, R., Masoudi, M., Afzali, F. and Falah, R., 2012. Assessment of desertification using ground water criteria and GIS (case study:Zarin Dasht Fars). Journal of Irrigation and Water Engineering, 7: 1-10.