تعيين مناطق تحت اثر یادانزایی
با پردازش داده‌های ماهواره‌ای
(مطالعه موردی: دشت کاشان)

۱- بررسی روند تغییرات شوری خاک

مجتبي پاکپور (۱) و سید مرتضى ابطحی (۲)

چکیده
برای تشخیص قابلیت‌های داده‌های متواصل ماهواره‌ای در ارزیابی و پایش پدیده‌های مرتب داده‌های نظریه‌ای تحقیق گسترده‌ای صورت گرفت. دشت قم - کاشان به عنوان یکی از مناطقی که در معرض خطر ببینانی شدن تلقی می‌شود انتخاب و روند تغییرات پدیده‌های نظریه، کاربری اراضی، فرسایش بادی، به‌کمک داده‌های ماهواره‌ای و روند تغییرات سطح سفره و کیفیت آب‌های زیرزمینی، آب‌های حوضه‌های بالادست و گل آلودگی رودخانه‌ها به‌کمک تحلیل داده‌ها و نقشه‌های موجود مطالعه شد. در این مجال نتایج مرتب داده خاک اربابی می‌گردد.

نخست، دو سری از داده‌های رقمی لندس مس اس ۱۹۷۶ و تی‌ام ۱۹۹۳ با زمان تقریبی یکسان از نظر ماه برداشت، مورد پردازش‌های اولیه قرار گرفتند. به‌کمک نتایج مطالعات صحرایی هر یک از تصویرها به‌روش مناسب خود طبقه‌بندی شدند. طبقه‌بندی با باندهای ترکیبی PCA12، PCA34، PCA45 و NDVI در ام‌اس و باندهای اصلی و PCA12۳ و PCA57 و TDVI و TDVI در تی‌ام صورت گرفت. طبقه‌بندی از نوع

۱- عضو هیات علمی مرکز تحقیقات منابع طبیعی و امور دام فارس - شیراز، ص، پ ۱۵۶۵-۶۱۷

<p>pmojtaba@hotmail.com</p>

۲- کارشناس ارشد مرکز تحقیقات منابع طبیعی و امور دام اصفهان
نظرات شده و با الگوریتم حداکثر درست‌نمایی (ML) بود. دقت آن به‌طور بنیادی بر اساس اطلاعات میدانی مورد ارزیابی قرار گرفت و دقت کلی ۶۵٪ و ۷۲٪ به ترتیب برای ام‌اس‌اس و تی‌ام بدلست آمد. نتایج نشان می‌دهند که در فاصله دو مقطع زمانی، از سطح اراضی بدون سوپر به میزان ۰/۷۵٪ از کل کاسته و بر مساحت اراضی با طبقات سوپر کم، متوسط و زیاد به طور پلکانی افزوده شده است. مساحت سطوح شهرداری دریاچه نمک کاشان به مقدار ۰/۱ کاهش داشته است.

دستورالعمل گروه‌بندی این است که علی‌رغم یکسان نیبودن ویژگی‌های تصویری ام‌اس‌اس و تی‌ام، مقاپسه‌نیزهای موضوعی حاصل از کاربرد مجموعه فنون برداریهای تصویر بر روی هر یک اطلاعات مفیدی بدلست خواهد داد. این موضوع بهبودی به توجه به ارزش قدمت زمانی ام‌اس‌اس در طول ان برکنار طول دویه مطالعه مهمیت بارزتری خواهد داشت.

واژه‌های کلیدی: شوری، بیابان‌زایی، کاشان، لنپرد، سنجش از دور، تجزیه مؤلفه‌های اصلی (PCA).

مقدمه

آنچه امروره به عنوان بیابان‌زایی شناخته شده و یک دشواری مهم زیست محیطی به شمار می‌رود، مترادف تخرب سرزمین‌های آباد است که به طبق تعریف ۱۹۹۲ کنفرانس زمین، و تأیید ۱۹۹۴ اعضای پیمان جهانی مهار بیابان‌زایی، محدوده اثر آن اقیم‌های خشک، نیمه خشک و نیمه مرطوب خشک را می‌گیرد (درویش، ۱۳۷۹). بدیه‌هایی نظری‌شوند زمین‌های و منابع آبی، تسهیل کرده، خاک، سیر قهرمانی مراکز، کاهش تولید اراضی زراعی، جنگل تراشی و تخرب بوشک گیاهی از وجود مختلف تخرب سرزمین قلمداد شده‌اند (جویجدا، ۱۳۷۵).
 تعیین مناطق تحت اثر بیابان‌زایی با پردازش داده‌های ماهواره‌ای

نزدیک به 7 درصد مساحت خشک‌های جهان زیر پوشش خاک‌های متأثر از شوری قرار دارد و نیمی از آن (10 میلیون کیلومتر مربع) در مناطق خشک و نیمه خشک و به نحو عمده بیابان‌ها واقع است (زابلکس، 1376) و از سوی دیگر نزدیک به 20 درصد کشتزارهای آبی جهان (2/3 از 2/17 میلیون هکتار) در معرض شوری است (پذیرا و صادق‌زاده، 1999؛ به نقل از قسمی‌ی و همکاران، 1995). در ایران بر اساس برآوردهای مختلف از 16 تا 24 میلیون هکتار از زمینهای کشور با درجات مختلف بپیدا‌های شوری دیده یا روزنده (دیوان و فاموری، 1984؛ وان آرت و آوسترکمپ، 1988؛ کوردا، 1970؛ روزی طلب، 1986؛ پذیرا و صادق‌زاده، 1999). این ارقام شامل هر دو اراضی زیر کشت و پایگاه بوده و داده‌ها قابل استفاده از ابعاد شوری در کشتزارها به تنهاپی در دست نیست. شوینده‌ی اصلی تحقیقات در تغییرات بین سالی عوامل شورای کشتئه است (سیادت، 1999).

به دلیل تعدد و ترکیب عوامل مختلفی که در توزیع شوری خاک در یک منطقه تاثیر دارند و نیز با به تغییر پدیدگی متنوع مکانی، باش نظیم آن جهت کاربرد روش‌های پیشگیرانه و اصلاحی ضرورت می‌یابد. سنگین می‌باشد که زمین کارآگاهی سطوح پزشگی را به طور منظم پوشش می‌دهد کارآگاهی بزرگی جهت پایداری پیوسته شوری در خود دارد (مایرز و همکاران، 1980؛ خارین، 1982؛ بیرنگرند، 1993؛ هلدن، 1985؛ تکر و زوستیک، 1986). از میان شمار فراوان تحصیلات انتشار یافته که از لحاظ فکری و یا روش به پژوهش حاضر تجنسی داشته‌اند، به دستاورد برجسته‌ای از آنها که به نحوی به کار این پژوهش‌ها آمدیداند اشاره خواهد شد.

دیوریدی و راثر (1992) در مورد انتخاب بهترین ترکیب باندی سنجش‌های (1) به منظور طبقه‌بندی خاک‌های شور در منطقه ایندودگاتیک هند تحقیقات انجام دادند. برای

1- Thematic Mapper
تشخیص بهترین ترکیب سه باندی از ترکیهای متعدد از شش باند تی ام (تاماً باندها به جز باند حرارتی) از عامل "شاخص مطلوب" (۱) به شرح زیر استفاده نمودند:

\[
\text{OIF} = \frac{\sum \text{SD} \times \text{CC}}{\sum |\text{CC}|}
\]

تعداد انحراف معیار سه باند و |\text{CC}| SD که میانه سه باند می‌باشد (به طور مثال همبستگی بین باندهای ۱ و ۲ و ۳ و ۴ و ۵ و ۶) مقدار OIF برای حالت مختلف (۲۰ حالت) ترکیب سه باندی محاسبه گردید.

با این فرض که هر ترکیب سه باندی که دارای OIF بیشتری باشد بیشترین اطلاعات را ارائه می‌کند، از میان ۲۰ حالت، ترکیب سه باندی ۱ و ۲ و ۵ به عنوان مناسب‌ترین و ترکیب سه باندی ۱ و ۲ و ۴ با هر دویند درجه تفکیک کندگی معرفی شد.

جوشی و ساهینی (۱۹۹۳) در مورد تهیه نقشه‌شوری با استفاده از داده‌های اماس اس (۱) و انجام مطالعه ای انجام دادند. منطقه مطالعه شامل شرق و غرب هند بوده که بر اساس موقعیتی خاک، هیدروآلوژی و بخش‌های گیاهی با کمک باندهای ۱، ۵ و ۶ به سه بخش شوری شدید (شامل پروسته های نمک)، شوری متوسط (شامل خاک‌های شور ولی قابل کشت) و شوری کم تقسیم شدند. داده‌های باند ۵ نسبت‌های تی ام و باند ۲ سنجش‌های اماس برای تهیه نقشه شوری مورد استفاده واقع شد و وقت کار به ترتیب ۹۰ و ۷۴ درصد برده و نقشه‌های بدست آمده از این باندها به تناوب دقت بالاتری نسبت به نقشه‌های حاصل از باندهای دیگر داشته‌اند.

رحمان و همکاران (۱۹۹۴) در وایومینگ آمریکا، همبستگی بین نسبت‌های طیفی داده‌های ماهواره‌ای اسبات با شوری، قلابیت، و برخی عناصر غذایی خاک را در یک Multi Spectral Scanner و Optimum Index Factor.
تعیین مناطق تحت اثر بیابان‌زایی با پردازش داده‌های ماهواره‌ای

خاک مزرعه ذرت مورد جستجو قرار دادن. نسبت‌های طبیعی شامل "شاخص درخشش‌گر" BI، و "شاخص قرمز" NDVI(2) بود. BI دارای همبستگی بارز مثبت با EC، کلسیم، و میژی محلول و همبستگی منفی با میزان رنگ خاک بود. نیز، EC، کلسیم، و میژی محلول همبستگی منفی داشت. همچنین، مؤلفان یاد شده را نظر بر این است که در میان باندهای اسپات، باند ۳ (ایکس اس) ۳ مناسب‌ترین باند برای مطالعه خاک‌های شور می‌باشد. ارتباط بین برخی عناصر غذایی خاک با مقادیر DN حاصل از نسبت‌های طبیعی به نحو عمده ناشی از تأثیر افزایش تراکم پوشش سبز و در نتیجه افزایش RI و NDVI بوده است.

ورما و همکاران (۱۹۹۴) در ایالت اوتاوا بررسی‌های هند بر اساس داده‌های رقومی تیام خاک‌های شور منطقه را به طبقه‌بندی کرده‌اند: ۱) کمتر از ۱۰ درصد منطقه پوشیده S1 از نمک، ۲) ۱۰ تا ۳۰ درصد (S2) و ۳) (۳۰ تا ۵۰ درصد (S3)، ۴) ۵۰ تا ۷۵ درصد (S4)، و ۵) بیش از ۷۵ درصد (S5).

راثو و همکاران (۱۹۹۵) در منطقه کرنال ایالت هاریانای هند داده‌های تیام را به صورت "ترکیب رنگی کاژ" FCC(4) مرتب به نویسی و مارس ۱۹۸۸ برای تشخیص خاک‌های شور بکار برده‌اند. در ابتدا از سطح زمین اندازه‌گیری طبیعی رادیومتری انجام گرفته و نشان داده شده که خاک‌های معمولی، شور و سدیم متوسط، شدیداً شور، و شدیداً شور و سدیمی به ترتیب درصد بیش‌ترای شور و اسپاتی نشان می‌دهند و نیز، تصویر‌های FCC باندهای مادون قرمز میانی (نیمام ۵ و ۷) از تباین مناسب‌تری برای

۱- Brightness Index (NIR + Red + Grn)
۲- Normalized Difference Vegetation Index
۳- Red Index (Red / Near Infra Red)
۴- False Color Composite (FCC)
تشخيص این گونه خاک‌ها بر خوردار هستند. در خاک‌های شدیداً شور و سدیمی و نسبتاً شور و سدیمی وجود پوشش گیاهی سبب کاهش قابل ملاحظه‌ای در باندهای ۲ و ۳ و افزایش در باند ۴ گردد، و در نتیجه تباین بین خاک‌های لحت و خاک‌های با پوشش گیاهی که تحت تأثیر نمک هستند کاهش می‌یابد. از دیگر نتایج پژوهش این بود که با افزایش زاویه ارتفاع خورشید از ماه نوامبر به مارس، بر میزان ارزش DN ها افزوده شده است.

دابر و گوستس (۱۹۹۴) مطالعه‌ای ای به منظور مدل سازی و نمایش خطرات ماندابی و شور شدن خاک در حاشیه دلتای مصر با استفاده از داده‌های زئومورفولوژیکی، سنجدش از دور و با کمک ساح جنگ دادند. این مطالعه در دو منطقه صورت گرفت که یکی از آنها منطقه هشت آسیا بوده و اطلاعات موجود آن به قرار زیر بود:

اطلاعات رقومی سنجدش اماس تاریخ ۲۹ زانویه ۱۹۷۷، اطلاعات رقومی سنجدش اساتید ایکس از تاریخ ۲۰ سپتامبر ۱۹۸۹، اطلاعات رقومی سنجدش تیام تاریخ ۱۹ فروردین سال ۱۹۹۱ و نقشه های توپوگرافی با مقياس ۵۰۰۰۰:۱ از تاریخ ۱۹۴۷ بود. تصویرهای هر سه سنجدش به روش طبقه‌بندی نظرت شده و الگوریتم «حداکثر به هفت قسمت طبقه‌بندی شد. از آنجا که اطلاعات میدانی ML(۱) درست نمایی» برای داده‌های سال ۱۹۷۷ و جودی‌نوازی به منظور طبقه‌بندی نظرت شده، نمونه‌های تعلیمی به واسطه شبه‌های طیفی به کمک دو تصویر طبقه‌بندی شده دیگر انتخاب می‌شودند. بهترین نتیجه طبقه‌بندی از تصویرهای تیام پدیده‌ای از منطقه آزمایشی دیگر ایسپانیا بوده که اطلاعات موجود از این منطقه شامل: داده‌های رقومی سنجدش اساتید ایکس از تاریخ ۱۶ زرتشت ۱۹۹۱ و نقشه های توپوگرافی با مقياس ۵۰۰۰:۱ از تاریخ ۱۹۳۷ و نقشه توپوگرافی با مقياس ۱:۵۰۰۰۰۰۰ از تاریخ ۱۹۸۵ بود.

۱ Maximum Likelyhood
که نقطه تیبوگرافی سال ۱۹۴۷ برای تهیه "شبه رقامت ارتقائی" (1) و نقشه سال ۱۹۸۵ که مکان جاده‌ها و کانال‌ها را نیز تغییر می‌کرد به منظور تطبیق هندسی و تعیین نقاط کنترل استفاده قرار گرفت. پوستش این منطقه با استفاده از تصویر اسپات به ۵ طبقه از طبقه طبقه‌بندی نظارت شده و الگوریتم حداکثر درست‌نمایی تقسیم شد.

متریت و زینک (۱۹۷۷) برای تشخیص پراکنش فضایی خاکهای تحت تأثیر نمک و سدیم در واحده بوناتا-کلزا در اکثریت مراکز با داده‌های تیام ۵۵ نمونه تعیین از عمق صفر تا ۵ سانتی‌متر برداشتند و مولفه‌های شوری، بافت، مواد آلی، نوع بوسته و رنگ خاک را اندازه‌گیری کردند.

برای کاهش خطاهای طبیعی پس از طبقه‌بندی یک ماسک تهیه شد و خاکهای آهکی که در تفسیر چشمی قابل تشخیص بودند با طبقات دیگر پس از طبقه‌بندی ادامه گرفتند. برای انتخاب باندهای مناسب از "واگراپی تغییر شکل یافته" (۲) استفاده و مشخص شد که ترکیب باندهای ۰، ۲، ۴، ۶ و ۷ تیام برای طبقه‌بندی کلاس‌ها مناسبتر است. در این پژوهش در نهایت ۹ طبقه اطلاعاتی برای شوری و قلیاییت ایجاد و ۲ طبقه خاکهای آهکی نیز اضافه گردید.

راثو و دیریوئدی (۱۹۹۸) مطالعه‌ای در زمینه بررسی خاکهای شور و ماندابی شده توسط اطلاعات ماهواره‌ای در منطقه‌ای در جنوب هند انجام دادند. در این مطالعه از تفسیر بصري تصویرهای رنگی کاذب ماهواره‌ای استفاده گردید. اطلاعات ماهواره‌ای مورد استفاده از سنجش‌های تیام و IRS-IB و مربوط به ماههای فوریه/مارس و دسامبر بوته است.

به‌وسیلهٔ باندهای سبز، قرمز و مادون قرمز نزدیک تصویر رنگی کاذب تهیه و به منظور تفسیر بصري چاپ شد. به منظور جمع‌آوری اطلاعات جانبه نواری روز این

1- Digital Elevation Model
2- Transformed Divergence
تصویرها به عنوان تعبیر کننده محل برداشت نمونه‌ها مشخص گردد. از محل نمونه‌ها مشخصاتی از قبیل کاربرد، بوشکش، هزکش و سطح آب زیرزمینی بادداشت گردد و نمونه‌های خاک به منظور تعبین مؤلفه‌های pH, EC, ESP, K, Ca, Mg, Cu, Zn, Al, Fe, Mn, Co, Cu, و Zn کاتیون‌ها و آنیون‌ها برداشت شد.

با کمک این اطلاعات و با تفسیر بصیری، خاک‌های منطقه بر اساس مؤلفه‌های یاد شده به سه دسته شور، سدیمی و شور-سدیمی و مناطق ماندابی به دو دسته ماندابی دائمی و فضایی تقسیم گردیدند.

طاهرزاده (۱۳۷۰) به منظور شناسایی اراضی زعفران در شرق از تصویرهای ماهواره‌ای بهصورت بصیر استفاده گردید که این تصویرها بهصورت سیاه و سفید و رنگی کاذب از سنجش‌های امکانی و نیاز به‌دنده اندازه‌گیری شده شوری با تصویرهای امکانی و نیاز به‌دنده امتیاز ۷۷/۵۰ تا ۱۰۰ درصد عنوان شده است.

خراسانی و ایزدیان (۱۳۷۱) تحقیقی در مورد ارزیابی تغییرات شوری در دشت قزاقان انجام دادند که در این مطالعه از تصویرهای سنجش‌های امکانی سال ۱۹۷۵ به‌صورت بصیر استفاده شد. در این مطالعه نقشه بافت خاک و شوری تهیه و بعد با نقشه شوری خاک ۲۰ سال قبل (۱۹۵۵) مقایسه و پیش‌روی به‌وسیله یک بررسی گردید.

دریافت شده که قسمتی از حاشیه جنوب غربی تا شرق این ناحیه نسبت به ۲۰ سال قبل افزایش شوری داشته و در تبیین علل آن فعالیت‌های کشاورزی مؤثر شناخته شدند.

دماوندی (۱۳۷۶) مطالعه‌ای در مورد امکان کاربرد داده‌های ماهواره‌ای در شناسایی و طبقه‌بندی اراضی شور به روش رقومی در منطقه دوبیش تحت حوزه سلطان قم انجام داد. در این پژوهش بررسی امکان نشانه‌های طبقه‌بندی شوری خاک با استفاده از داده‌های ماهواره‌ای لندست (مختل‌های تام) به روش رقومی و تعبین میزان همبستگی و رابطه میان مقادیر DN و شوری (EC) خاک بوده است. برای این منظور ۵۲ عدد نمونه خاک سطحی (۲-۰ و عمقی (۰-۱۵ cm) در دو جهت و با آزمون‌های
10، 110 و به فواصل به ترتیب 100 و 150 متر میان نمونه‌ها برداشت و
بافت آن اندازه‌گیری شد. رابطه بین مقدار شوری خاک و pH، EC و
DN از طریق رگرسیون
بررسی شد. مدل‌های تجربی یک نمونه‌گیری دنی شکل‌گیری آمده برای تیام 4 و تیام 4/3 (باند
تعمیم بر باند 2) نسبت به دیگر باندهای اصلی و مصنوعی بیشتر بوده است. نتایج
حاصل از طبقه‌بندی تصویر نشان دادند که در طبقه‌بندی نظرات شده بهترین نتایج
مریخته ترکیبی از باندهای اصلی و باندهای حاصل از "تجزیه مؤلفه‌های اصلی"
بوت‌باند و در طبقه‌بندی نظرات نشده ترکیب سه تایی تیام 7، تیام 5 و تیام 4

بهترین نتیجه را داشته است.

علوی پنی (1998) تحقیقاتی در منطقه اردکان برد با هدف ارزیابی قابلیت داده‌های
سنجدته تیام به منظور تهیه نقشه بوشش و مطالعه میزان شوری خاک انجام داد. در ابتدا
نمونه برداری انجام شد و از تجربه تجزیه آنها به عنوان نمونه تعیین در طبقه‌بندی
استفاده گردید. در طبقه‌بندی ابتدا باندهای 1، 2، 3، 4 و 5 سنجیده تیام دخلت
داشته‌اند. با توجه به نتایج، دقت بعضی از طبقات به علت تشابه بسیار ناپایین بود.
بعد برای طبقه‌بندی باند شش نیز دخلت داده شد و از باندهای 3، 2، 1 و 6 برای
طبقه‌بندی تصویر استفاده شد که سبب افزایش دقت گردید. نتیجه‌گیری این بود که باند
حرارته تیام نقش مهمی در جداسازی (1) خاک شور از خاک، (2) خاک شور از خاک
سور و (3) مناطق شهری از سله‌های نمکی سیاه میان‌دی می‌باشد که به قهوه‌های دارد.

جوانچه ملاحظه می‌شود، قابلیت تصویر برای ماهواراهای برای طبقه‌بندی شوری
خاک و نیز امکان استفاده از داده‌های جنگ زمینی سنجیده‌های مختلف برای روند‌پذیر
زمانی در یک منطقه خاص از برسیهای اساسی است که از زاویه‌های مختلف مورد
تحقيق واقع شده و برای بخشی از ابهام‌های آن باسخراحی یافته شده این تغییرپذیری

1- Principal Component Analysis
تحقیقات مرتع و بی‌بان ایران

مکانی-زمانی بی‌بدا شهری به گونه‌ای است که انجام تحقیق بومی برای رسیدن به بختی روش در پردازش داده‌ها و طبقه‌بندی موضوعی، ضرورتی است شناخته شده و از این رو هدف اساسی تحقیق حاضر را به خود اختصاص داده است.

مواد و روش‌ها
منطقه مورد مطالعه توسط ارتفاعات غربی و جنوبی دشت کاشان محصور شده و از شمال به درباجه نمک مسلب محدود می‌گردد. مرز شمالی آن ارتفاع 30° 33' تشکیل می‌دهد. مختصات جنوبی ترین نقطه آن 5° 05' 46' شرقی ترین نقطه 6° 55' 19' غربی ترین نقطه 3° 51' 49' می‌باشد (نگاره شماره 1).

ارتفاعات غرب دشت کاشان از طرف شمال به منطقه قم، از طرف جنوب به منطقه میمه و از سمت غرب به قسمت‌های مرکزی حوضه آبی‌خور قم و از طرف شرق به دشت کاشان محدود می‌شود. ارتفاعات جنوبی کاشان از شمال به دشت کاشان، از طرف جنوب به منطقه مورچه خورت، از طرف غرب به ادامه ارتفاعات غربی کاشان و از طرف شرق به دهکده‌های کویری خالدآباد و ماربک آباد محدود است. متوسط بارندگی 20 ساله تا 1377/6/12 میلی‌متر بوده و دمای مطلق تا 49 در تابستان و 16/5 در زمستان در ایستگاه کاشان (مرکز دشت) رسیده است. مساحت کل آبریز 7200 کیلومتر مربع می‌باشد.

1- تهیه داده‌های دورسنجی
به منظور سفارش داده‌های مورد نیاز ابتدا محدوده مطالعاتی روزی نقشه توپوگرافی با مقياس 1:250000 تهیک و طول و عرض جغرافیایی آن محاسبه گردید. بعد با توجه به آن شماره گذر و ردیف تصویر ماهواره‌ای مورد نیاز تعیین شد. قدیمی ترین اطلاعات ماهواره‌ای موجود از این منطقه مربوط به خرداد سال 1355.
جمع مناطق تحت اثر بیانان دوازد هزار ماهواره‌ای

از ماهواره لندست ۲ سنجش‌های امسال بود. قدرت تفکیک زمینی این اطلاعات ۷۹۸۵۶ متر و شامل دو باند سبز، قرمز و دو باند مادون قرمز نزدیک می‌باشد. شماره گذر و رده‌فیش کاشان در این سنجش‌های به ترتیب ۱۷۶ و ۲۶ و تعداد سطح و ستون فرم کامل برابر ۲۶۴ و ۲۸۷ بود. جدیدترین اطلاعات مربوط به ۲۸ اردیبهشت سال ۱۳۷۷ از ماهواره لندست ۵ سنجش‌های علی با نام دیسک پیکسل ۲۵۵×۲۵۵ متر و شامل هفت باند آب، سبز، قرمز، مادون قرمز نزدیک، دو باند مادون قرمز مایعی و مادون قرمز حرارتی بود. شماره گذر و رده‌فیش کاشان در این سنجش‌های به ترتیب ۱۶۴ و ۱۷۴ و تعداد سطح و ستون دو کوادرات ۹۱۰۰ و ۹۱۶۸ بود.

تعمین اطلاعات پس از تهیه، روی دیسک سخت رایانه (هاردار دیسک) منتقل و بعد به منظور پردازش‌های بعدی به محفظ ایپدیسی (۲) نسخه ۲۰۰۸ وارد گردید.

۲- تهیه اطلاعات تکمیلی

به منظور طبقه‌بندی و شناسایی بدیه‌های مختلف داده‌های ماهواره‌ای و تعیین دقیق طبقه‌بندی به یک سری اطلاعات جانی نیاز می‌باشد. این اطلاعات از طریق نقشه‌های موجود، گزارش‌ها و مطالعات قبلی و یا از طریق مطالعات صحراوردی بسته می‌آید. در این پروژه اطلاعات تکمیلی مورد استفاده به کمک نقشه‌های شوری تهیه شده توسط مؤسسه تحصیلات عالی و کمیته تحصیلات عالی و ریاست گرایی. در مطالعات صحراوردی، با توجه به مبادله بیانی بر روی تصویرها و با لحاظ کردن تعداد و پراکنش نقاط تعیینی در سطح منطقه، موقتی تحقییق نقاط مشخص گردید. در هر نقطه علاوه بر

۱- قدرت تفکیک زمینی اسلات تبسکت EOSAT ۱۹×۲۲ امت اسلاس و در تقویم ۱۹۸۸ که توسط سایه‌گرفته

۲- IDRISI
تعیین نوع و تراکم یوشک و کاربری اراضی نمونه برداری خاک به صورت سطحی (عمق صفر تا 10 سانتی‌متر) انجام یافته‌است. به منظور افزایش دقت، علاوه بر نمونه‌برداری از نقطه اصلی، نمونه‌هایی کمکی در سه جهت متفاوت (زاوها به ۱۲۰ درجه) و با فاصله ۵۰ متر از نقطه اصلی برداشت گردید. موقعیت دقیق هر نقطه اصلی نمونه‌برداری با به کمک گیرندهٔ زمینی مازلان ۲۰۰۰ با دقت ۷تا ۱۰ متر مشخص شد. نمونه‌ها در آزمایشگاه تجزیه و عوامل SAR, pH, EC, بافت و درصد سنگریزه تعیین شد.

۳- تصحیح هندسی تصویرها

اطلاعات برداشت شده توسط ماهواره بنا به دلایل مختلفی نظر جرختن (ایجاد انحراف در مدار ماهواره)، مقياس (تغییر ارتفاع ماهواره)، جابجایی (تفاوت در موقعیت تصویر و نقطة زمینی) و کنی‌گذگی (بر اثر جرختن زمین)، ممکن است دارای خطاهای هندسی باشد. برخی از این احتمال‌ها توسط تدارک کنندهٔ تصویر اصلاح شده و بقیه خطاهای باقی‌مانده به وسیله اطلاعات زمینی با نقطهٔ دقت اصلاح شود.

 تصویر تی‌ام به روش «تکشه به تصویر» (۱) و با کمک نقاط کنترل برداشت شده از زمین و نقطه‌های توبوگرافی مورد تطبیق هندسی قرار گرفت. تصویر ام‌اس‌اس به کمک تی‌ام اصلاح شده و به روش «تصویر به تصویر» (۳) با کمک ۸ نقطهٔ کنترل، تصحیح شد. به منظور یکسان کردن انتدازه پیکسل‌های این داده‌ها با داده‌های تی‌ام (۲۵ متر) به‌گزاره تعداد سطر و ستون تصویر اولیه تعداد سطر و ستون بدست آمده با پیکسل‌های ۲۵ متری جایگزین شد. در هر دو مورد، معادله مورد استفاده از نوع خطی ۳ جمله‌ای و روش نمودنی‌های ۱۳۵ کنترلین همسایه بود.

1- Global Positioning System 2- Map to Image
3- Image to Image
تعیین مناطق تحت اثر بیانانزایی با پردازش داده‌های ماهواره‌ای

دقت هندسی تصویرها با کمک مسیر جاده‌ها و راه‌آهن دیجیت شده از روی نقشه‌های توبوگرافی 20000 بررسی و دقت قابل قبولی مشاهده شد.

4- تصحیح و یکسان سازی تصویرها از نظر رادیومتری
علاوه بر خطاهای هندسی امکان بررسی اشکالات دیگری ناشای دستگاه‌های سنجش (خطاهای سیستمی) و یا مسایل جوی (نظر وجود ابر با غبار) وجود دارد که عدم توجه به آن‌ها از ارزش و دقت کار خواهد کاست. به این منظور، اطلاعات رقمی TIF تبدیل و در محفظه فتوشاپ (1) مورد بررسی قرار گرفتند. لازم به یادآوری است که این نرم‌افزار برای بررسی کیفیت، قدرت نمایش بسیار بالایی دارد.

در این مورد تنها مشکل وجود پوشرش ابر در قسمتهایی از تصویر اماساس بود. لکه‌های ابر و سایه‌هایشان به نحو عمده قسمت غربی تصویر را پوشرش می‌دادند. از آنجا که از مناطق تحت پوشرش ابر، اطلاعاتی ضبط نشده و وجود آنها در بررسی روند تغییرات مشکل ساز بود، این نقاط از تصویر تی ام نیز حذف گردیدند.

5- طبقه‌بندی تصویر
به منظور طبقه‌بندی داده‌های سنجش‌های اماساس شوری، ابتدا ترکیب رنگی کاذبی که باندهای آبی، سبز و قرمز آن را به ترتیب باندهای PCA1 تجزیه مؤلفه‌های تشکیل می‌دادند تهیه شد. انتخاب نوع باندهای شرکت کننده در ترکیب رنگی کاذب به میزان تفکیک طبقات مورد نظر بستگی داشت. بعد با توجه به گسترده داده‌های مربوط به شوری (حاصل از تجزیه نمونه‌های خاک) انواع مختلف دسته‌بندی انجام و هر بار دقتی استناد نقاط بررسی شد.

1- Photo Shop
در نهایت بیشترین دقت طبقه‌بندی با داشتن چهار طبقه‌سنجی: شوری با EC های ۲-۰.

۲-۱۰، به‌سیاست‌های دیگر متر و طبقه‌بندی با ایه متوسط بسته اتم. جهت انجام طبقه‌بندی نظرت شده، مکان تصویری نمونه‌های تعیینی تهیه و به‌عنوان طبقات مختلف به رایانه معرفی شد. برای این منظور ابتدا فاصله برداری که شامل تعداد نمونه‌های تعیینی در هر طبقه می‌شود تشکیل شد. بعد به وسیله‌های دستور و با استفاده از فاصله نواحی آموزشی باندی‌های مختلف، فاصله‌های ناشانه Makesig ایجاد شد. این نشانه‌ها که برای طبقه‌بندی نظرت شده تصور می‌کردند Signature File (Signature File)

می‌رود شمار مؤلفه‌های کمی ارزش‌های طبیعی نمونه‌های تعیینی، نظری میانگین، انحراف معیار، حداکثر و حداکثر ارزش می‌باشد. طبقات نواحی آموزشی توسط رمزی Edit Sig به صورت عدد صحیح نشان داده می‌شود. پس از آن به وسیله‌های دستور ایجاد شده مشاهده Makesig می‌توان مشخصات فاصله‌های نشانه‌های راک توسط دستور ایجاد شده مشاهده Sigcomp

و به اصلاح و تغییر آن مبادرت کرد. سپس به‌طور باندی‌ای به چنین نشانه‌های طبیعی ایجاد شده، حداکثر تفکیک پذیری را نسبت به یکدیگر دارند با دستور Makesig در باندی‌های مختلف و به‌طور همزمان به صورت نموهای همدیگر مقایسه می‌شوند. این نموهای می‌توانند به شکل منحنی‌های حاصل از میانگین نشانه‌ها و یا جعبه‌هایی از حداکثر ارزش‌های طبیعی داده‌های فاصله تنظیم شوند.

در داده‌های تماس پس از بررسی‌های مختلف و تشکیل نموهای باندی مختلف (اعم TM از باندی‌های اصلی و مصنوعی) و مقایسه دقت طبقه‌بندی بدست آمده، باندی‌های NDVI PCA123 PCA57 انتخاب و طبقه‌بندی به کمک آنها انجام گرفت.

به منظور طبقه‌بندی داده‌های امسال به روش نظرت شده، نمونه‌های تعیینی بر اساس تقسیم‌های اصلی و اطلاعات قدمی و به کمک تصویرها طبقه‌بندی شده‌است تم تعیین NDVI PCA12 FCC حاصل از باندی‌های گر دردند. نمونه‌های تعیینی بر روی
6- تعیین دقت طبقه‌بندی

بعد از انجام طبقه‌بندی، تعیین دقت تصاویر به‌دست آمده امروز ضروری است، زیرا میزان انتقال با واقعیت زمینی، را مشخص می‌نماید. تعیین دقت طبقه‌بندی به دو صورت انجام می‌گیرد:

الف- مقایسه صد درصدی پیکسل به پیکسل این روش کاملاً دقیق بوده و در مواردی که یکی رود به پیکسل نسبت به واقعیت زمینی از منطقه مورد نظر در دسترس باشد، نقشه حاصل از طبقه‌بندی پیکسل به پیکسل با نکشته واقعیت زمینی مورد مقایسه قرار می‌گیرد.

ب- مقایسه به صورت نمونه‌گیری این روش در موارد کار با سطوح وسیع و گسترده که تهیه واقعیت زمینی عملی نباشد کاربرد دارد. برای این منظور با استفاده از قطعات شاهد (که مانند نمونه‌های تعلیمی بوده ولی در طبقه‌بندی وارد نمی‌شوند)، و روشهای آماری، دقت طبقه‌بندی برآورد می‌شود. در این تحقیق به‌توجه به عدم دسترسی به نقشه زمینی از این روش برای تعیین دقت بهره‌گیری شد.

بردین گونه که ابتدا قبل از طبقه‌بندی قطعات نمونه برای هر طبقه‌بوده دو دسته، نمونه‌های تعلیمی و شاهد تقسیم شدند. قطعات شاهد در محاسبات آماری وارد نمی‌شوند و فقط جهت تعیین دقت بکار می‌رودند. با قرار دادن قطعات نمونه شاهد بر روی تصویرهای طبقه‌بندی شده حاصل از قطعات نمونه تعلیمی، صحبت طبقه‌بندی در محل قطعات شاهد، پیکسل به پیکسل تعیین شد و دقت کلی طبقه‌بندی بر اساس رابطه
تجربه‌های شوری حاصل از طبقه‌بندی تصویرهای

پرداختن بر اساس آمد:

tعداد یک‌سرهایی که صحیح طبقه‌بندی شده‌اند = دو هزار

مجموع یک‌سرهایی

دقت کلی طبقه‌بندی تصویر تی‌ام به کمک نمونه‌های صحرایی تعيین و برای

درصد و دقت طبقه‌بندی تصویر اماس اس به کمک نقشه‌ها و شواهد موجود، ۶۵ درصد

پرآورده گردید.

7- تشخیص تغییرات

با انجام دستور کراس (cross tab) که در اصطلاح قطع دادن گفتگوی شده است

چگونگی تغییر یک‌ایک دسته‌های شوری در تصویر جدید نسبت به قدیمی تعيین و

میزان تغییر مساحت به دسته‌ها محاسبه گردید.

مشاهده‌ها و نتایج

بررسی مساحت هر یک از طبقات تصویرهای قدیم و جدید، نمایانگر تغییراتی بود

که بیشتر آن مربوط به افزایش مساحت اراضی با شوری زیاد به میزان ۲/۵ درصد و

کاهش اراضی بدون شوری به میزان ۲/۶ درصد نسبت به مساحت اوته (یا بهترین

۷/۵ و ۵/۷ درصد نسبت به مساحت کل منطقه) بوده است (جدول شماره ۱). همچنین

با توجه به جدول شماره ۲ ملاحظه می‌شود که در دسته‌ای اراضی با شوری کم تا متوسط

۲/۱ درصد افزایش مساحت وجود داشته که حاصل نیم درصد تبدیل از بدون شوری

به این دسته و ۵/۵ درصد از این دسته به شوری زیاد و ۱/۱ درصد تبدیل از سطوح

نمک‌زار بوده است. همچنین ۲/۰ درصد از مساحت نمک‌زار کاسته شده که

پیشتر تغییر (۱/۹ درصد) جایگزینی با دسته‌ی شوری زیاد بوده است. نگاره شماره ۲

حاوی نقشه‌های شوری حاصل از طبقه‌بندی تصویرهای ۱۹۷۶ و ۱۹۹۸ است.
جدول شماره 1 - مساحت طبقات شوری در دو مقطع زمانی 1976 و 1998

<table>
<thead>
<tr>
<th>طبقه</th>
<th>متوسط Ec (ds/m)</th>
<th>مساحت 1976</th>
<th>مساحت 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون شوری</td>
<td>4.00/2.00</td>
<td>2.00/0.00</td>
<td>0.00/0.00</td>
</tr>
<tr>
<td>کم تا متوسط</td>
<td>1.00/2.00</td>
<td>1.00/2.00</td>
<td>1.00/2.00</td>
</tr>
<tr>
<td>زیاد</td>
<td>0.50/1.00</td>
<td>0.50/1.00</td>
<td>0.50/1.00</td>
</tr>
<tr>
<td>نمکدار</td>
<td>0.25/0.50</td>
<td>0.25/0.50</td>
<td>0.25/0.50</td>
</tr>
<tr>
<td>کل</td>
<td>7.75</td>
<td>7.25</td>
<td></td>
</tr>
</tbody>
</table>

جدول شماره 2 - جدول تغییرات تغییر دسته‌های شوری در دو تصویر 1976 و 1998

<table>
<thead>
<tr>
<th>بدون شوری</th>
<th>کم تا متوسط</th>
<th>زیاد</th>
<th>نمکدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/5</td>
<td>6/1</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td>0/2</td>
<td>5/1</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td>0/9</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td>1/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td>0/10</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
</tr>
</tbody>
</table>
بحث ونتیجه‌گیری

با نگاهی به نحوه توزیع طبقات شوری در سال 1976 مشخص می‌شود که در آن زمان تا 29 درصد اراضی واقع در دشت کاشان با معقل شوری روبور نبوده و بخش بیشتر آن به درجات مختلفی از حدی کم تراز سیمانی نمکزار از شوری متاثر بوده است.

بانی‌آرین چنانچه دشت کاشان دشت اصلی به شوری یا دارای حساسیت نسبت به عوامل شوری کننده خاک نامیده شود دور از واقعیت نیست.

قرار داشتن در حاشیه‌ی یکی از دریاچه‌های شور و کویری ناحیه مرکزی ایران، منبعی از شوری را در ناحیه شمال دشت تأمین نموده و وجود رسوبه‌های تبخیری شوری می‌تواند در زیر آب‌رفته‌های مخروطی افکنه کاشان و راوند امکان بروز عوارض شوری از ناحیه زیرین را فراهم آورده است.

كاهش 7/5 درصدی در مصاحات کل اراضی بدن شوری و وسیع‌تر شدن اراضی با شوری متوسط و زیاد هم‌زمان با افزایش شوری آب‌های زیرزمینی بوده است (باعث و همکاران، 1379؛ ترابی، 1377). همچنین مطالعه نشانهای هم‌افتاً آب‌های زیرزمینی نشان می‌دهد که در نواحی مرکزی غرب و شمال غرب دشت به مقدار متفاوت از حداقل 1/8 تا 1/6 و متوسط بین سال‌های 1357 تا 1377 افت وجود داشته که بیان‌زینرین کاهش عمق مربوط به جایی است که بیان‌زینرین تمرکز کشاورزی را دارا می‌باشد (ابطحی، 1378).

در تبیین دلایل تشذیب شوری با نگاهی به تصویرهای طبقه‌بندی شده، دو ناحیه‌ی تأثیر

پذیرفته از شوری را می‌توان تشخیص داد:

(1) ناحیه‌ی مرکزی و غربی دشت کاشان. کاربرد آب‌های زیرزمینی که در سال‌های اخیر شورتر شده است به مور سبب شوری خاک اراضی کشاورزی شده، از این رو مناطق پر‌شورماری قابل مشاهده هستند که زمانی آباد و تحت کشت بوده‌اند و اکنون جز شهای فعال یا نشین شده به

کومه‌های رها شده در آنها چیزی باقی نمانده است (نگاره شماره ۳).
تمییز مناطق تحت اثر بیماری‌های با پردازش داده‌های ماهواره‌ای

(۲) اراضی انتهایی مجاور دریاچه نمک کاشان. بنابر نتیجه گیری پاک‌پرور و همکاران جایگذاری نمک در سطح خاک شده است. همچنین مشاهدات میدانی نشان دادند که در تناهیان انتهایی دشت، رسوه‌های تبخیری شوری به سطح زمین تبدیل و در گذشته با لایه‌ای از خاک سبک پوشیده شده بودند در سالهای اخیر به دلیل تخریب پوشش گیاهی مرتعی و عروض مانند خاک سطحی، فرسایش بادی تشذیب، خاک سبک روبن حذف و رسوه‌های شور زیرین پدیدار شده‌اند (نگاره شماره ۳).

همچنین در زمینه‌کا کاهش مساحت دریاچه نمک کاشان، به چند نکته باقی‌مانده توجه نمود:

- با توجه به اینکه تنها نیمه جنوبی دریاچه در محدوده این تحقیق قرار داشته نمی‌توان درباره تغییر مساحت کل دریاچه اظهار نظر نمود و تنها می‌توان گفت که ساحل جنوبی دریاچه پسروی داشته است;
- مشاهدات میدانی نشان دادند که برخی مناطق حاشیه دریاچه در سالیانه کاهش بوده و در تناهیان انتهایی به طور متعدد این مشاهده‌ها از شناختی بادرفت پوشتیده شده و در تناهیان انتهایی بوده‌اند اکنون توسط لاشهایی از سالهای بادفرت پوشتیده شده و در تناهیان انتهایی بوده‌اند بابر سطح بحث از دور خارج شده‌اند;
- با توجه به افزایش بارزی که در مصرف آب‌های برآمد دست دریاچه (از شمال و جنوب) در سالهای اخیر ایجاد شده، انتظار این است که از حجم آب‌های ورودی به دریاچه کاسته شده و در تناهیان انتهایی مساحت سطحی نمکی نیز به تبع آن کاهش یافته باشد، چراکه سطوح نمکی ساحل دریاچه به طور گرم حاصل از تبخیر سالانه آب‌های زمین‌رات است که نمک سطحی آن بر جا می‌ماند. به هر حال، علت‌هایی دقت این پدیده، خود می‌تواند موضوع تحقیق دیگری باشد.

در مورد استفاده از داده‌های ماهواره‌ای به منظور بررسی روند شوری نکات زیر درخور توجه می‌باشد:
تحقیقات مرتع و یافته‌های زمینی

انجام این گونه مطالعات حداکثر به تصویرهای دو مقطع زمینی با فاصله مناسب نیاز دارد و افزایش تعداد تصویرها سبب افزایش دقت مطالعه خواهد شد.

یکسان نبودن ویژگی‌های تصویری امام‌سیاس و تیام مانعی جدی در روندیابی زمینی بوده و در مورد می‌داند که تکیه بر این نکته تنها محدودیت‌های طبیعی و فنی است که این اطلاعات مقرون با زمان تصویربرداری است. هرچند این اطلاعات برای خود آنها نیز فراهم نیستند و تاکنون به استخراج نمونه‌های تعیینی از تصویر طبیعی بدون تهاده تیام برای استفاده در امام‌سیاس شده‌اند. همچنین مشترک و جوشی (۱۹۹۴)، داده‌های امام‌سیاس (۱۹۸۷) (تصویر کاذب از باندهای ۴، ۵ و ۶ و آی‌آراس ۱۹۸۸ (تصویر کاذب ۱، ۲ و ۴) با کاربرد روش‌های آماری در ایجاد که ترکیب داده‌های تیام و اسپت بحثین توانایی‌های براوی تفکیک مناطق تحت اثر تخلیه دارد. از این رو با توجه به اهمیت قدمی بودن تصویرهای امام‌سیاس اساسی در این زمینه این است که این تصویر به درستی مورد تصحیح هندسی و رادیومتری قرار گرفته و انتقال پیکسلهای آن به انتخاب‌های مشابه تیام شود و همچنین دسترسی به مطالعات قدمی مقرن با زمان تصویربرداری بر دقت تناوب خواهد افزوده؟

وارد کردن شاخص NDVI در تصویر مورد استفاده در طبقه‌بندی شوری در این پژوهش موجب افزایش دقت گردیده و در این یک نشانی مشخص نیست. مجدداً احتمال کاهش اثر جانین پوشش گیاهی را نمایش نوحه دور داشت و نیز با پای توجه داشت که بی‌نمایی دقت بالاتری بستگی نداشته، بلکه در تصویر با PCA بر دقت افزوده است.

همزمانی برداشت نمونه‌های صحراپی و داده‌های ماهواره‌ای تأثیر قاطعی بر قابلیت اعتماد تناوب خواهد داشت.

نتیجه پژوهش جاری که در سمت برگزی انجام و هدف اصلی آن آدرس دهی مناطق در
تعمین مناطق تحت اثر بیان‌زایی با پردازش داده‌های ماهواره‌ای

معرض آسیب شوری بوده است می‌توانند در تشخیص نواحی ماساله‌دار و کوچکتری از همین منطقه بکار گرفته شده و با تعداد نمونه بیشتر و با دقت افزونتری تکمیل شود تا بتوان برای پرسش‌های زیر و پرسش‌های تکامل یابیده‌دیگر پاسخ‌های درخوری یافت:

- کدام یک از باندهای اصلی، مصنوعی و یا ترکیبی، همبستگی بالاتری با پدیده‌های شوری در این منطقه دارند؟

- با توجه به مشابهت بازتاب حاکم‌های شور و حاکم‌های دارای لایه‌های مشهود چگونه می‌توان آنها را متاییز ساخت؟

- وارد کردن تصویرهای دیگری (نظیر اسپات‌های با تیم لنست۷) که از قدرت تفکیک بالاتری برخوردارند در ترکیب‌های باندی چگونه می‌شود است و آیا بر دقت کار خواهد افزود؟

سباسگزاری

این پژوهش در قالب طرح تحقیقاتی مؤسسه تحقیقات جنگ‌ها و مراتع به سامان رسیده و بخشی از آن به عناوین پایان‌نامه‌کارشناسی ارشد دانشگاهی مربوطی ارائه داشته‌اند. همگونی تهران توسط آقای سید مرتضی ابطحی تعریف و با موقفیت دفاع شده است. همکاری گرامی مؤسسه بهره‌برداری آقای اسامی رهبر در ارائه‌ایده نخستین و بازپروری یاری آن، آقای محمد دوست در همه‌کریه‌های تحریخ، استاد فرج الله محمودی با ارشادات کارساز و آقایان محمدرضا خسروشاهی، مسعود شکویی و مسعود مسعودی با همراهی های‌تان انجام این مهم را می‌شکسته‌اند و نیز آقایان حسن احمدی و علی اصغر درویش صرف اساتید راهنمای و مشاور پایان‌نامه‌های آن‌ها می‌توانند در خروج تقدیری در به کمال رسدین کار داشته‌اند. رانندگان بر تلاش مؤسسه بهره‌برداری آقای حاج لطفی با پیمودن مسیرهای شنزاد و کویری و همکاران ایستگاه تحقیقات کاشان با پردازهای محصل بر صاحبان این قلم مفت دارند. اهداء سپاسی عمیق و صمیمانه و آرزوزی بی‌پایان الهی کمترین و بیشترین بازآوردن نگارندگان برای همه دسته‌بانی است که یارگ‌رگ بوده‌اند.
نماد: شماره ۲ - طبیعت بندی شوری تصاویر لندست ام اس اس ۱۹۷۶ (بالا) و تایم ۱۹۹۸ (پایین) در کاشان
نگاره شماره ۳- نمونه‌ای از اراضی تخرب شده که زمانی کشتزارهايي آباد بوده‌اند. دشت
کاشان - مسیر آران به تقي آباد (برداشت: پاکپور ۱۳۷۷)

نگاره شماره ۴- اراضی انتهایی با ظهور لایه‌های زیرین شور. شمال حاشیه غربي بند
ریگ کاشان (برداشت: پاکپور ۱۳۷۷)
تتبع مناطق تحت اثر بیابان‌زایی با پردازش داده‌های ماهواره‌ای

۱- ابطحی، س. م. (۱۳۷۸). بررسی روند بیابان‌زایی (تخربی اراضی) در منطقه کاشان. پایان نامه کارشناسی ارشد، دانشکده مهندسی دانشگاه تهران.
۲- پاکپور، م. ش. (۱۳۷۹). استفاده از اطلاعات ماهواره‌ای و GIS در تعیین مناطق تحت اثر بیابان‌زایی. گزارش نهایی طرح تحقیقاتی (در دست انتشار).
۳- ترابی، ع. (۱۳۷۷). بررسی روند شور شدن آب‌های زیرزمینی شمال دشت کاشان. پایان نامه کارشناسی ارشد. مرکز تحقیقات مناطق کویری و بیابانی ایران، دانشگاه تهران.
۴- دروش، م. (۱۳۷۹). تحلیل بر مفاهیم و دانش و ازهای حوزه ادیبات بیابانی. مجله تحقیقات مرتع و بیابان، ش۶، ۱-۵۱.
۵- دمانودی، ع. (۱۳۷۶). بررسی امکان کاربرد داده‌های ماهواره‌ای در شناسایی و طبقه‌بندی اراضی شور به روش رقمو. پایان نامه کارشناسی ارشد، مرکز تحقیقات مناطق کویری و بیابانی ایران، دانشگاه تهران.
۶- زایبلوکس، شف. (۱۳۷۶). شورش‌های خاک و آب و رابطه آنها با بیابان‌زایی. برگردان مجید کریم‌پور ریحان و ناصر مشهدی. مجله جنگل و مرتع، (۳۵)؛ ۵۰-۵۵.
۷- جویچندا، (۱۳۷۵). بیابان‌زایی و بیابان‌زایی در چین. برگردان مسعود عباسی. انتشارات مؤسسه تحقیقات جنگل‌ها و مرتع.
of the 16th Earsel symposium Malta, 20-23 May.

Monitoring of Desertification by Satellite data processing

1- Detection change of Soil Salinity (Case study: Kashan plain)

M. Pakparvar(1), *M. Abtahi*(2)

Abstract

A study was conducted to determine the capabilities of the successive numerical landsat data for assessment and monitoring of soil salinization. Kashan plain with 7220 Km² of area, which is located on an arid zone of the central part of IRAN, selected as the site of investigation. It seemed to be a region prone to desertification processes. Two sorts of landsat data: MSS (1976), TM (1998) and the supplementary information such as the soil and geo maps, surface and subsurface water data were collected. After preprocessing, the images were classified on the base of the field and subsidiary data by four degree of salinity. Incorporation of the PCA12, PCA34 and NDVI in MSS and the TM4, PCA57, PCA123 and NDVI in TM data showed the best results. The classification performed by the maximum likelihood algorithm. Accuracy assessment was performed on the base of another category of

1- The member of scientific board of Fars Research Center for Natural Resources, Iran

P.O.Box 71555-617 email: pmojtaba@hotmail.com

2- (The junior research scientist, Desert Research Station of Kashan, Iran)
field data and showed 75% and 82% of overall accuracy for MSS and TM respectively.
Merging and processing the whole data and maps showed that 7.5% of non-saline parts of region, has been changed to medium to high saline, and in the same time, the size of Kashan salt lake has decreased 1.5% of total.
On the basis of the results, it would be expressed that even though MSS and TM data have not the same image properties; important information could be extracted by comparing their accurate classified maps.

Key words: Salinization, Desertification, Kashan, Remote sensing, PCA, Landsat, GIS.