مقایسه روش های ادغام داده های تصاویر سنجنده MODIS و OLIدر بهبود بارزسازی گردو غبار نواحی صنعتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بیابان زدایی، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، ایران

2 استادیار، گروه بیابان، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، ایران

3 دانشیار، گروه خاک شناسی، دانشکده کشاورزی، دانشگاه لرستان، ایران

4 دانشیار گروه برق مخابرات. دانشکده مهندسی برق. دانشگاه یزد

چکیده

از عمده مشکلات سنجنده های مستقر بر سکوهای هوایی و فضایی  نبود قدرت تفکیک مکانی، رادیومتریک طیفی و زمانی بالا بصورت همزمان است زیرا  طراحی چنین سنجنده هایی علاوه بر هزینه بری بالا دارای مشکلاتی در طراحی سنجنده می باشند. از طرف دیگر شناسایی و پایش بسیاری از پدیده های محیطی نیازمند به بکارگیری سنجنده هایی با قدرت تفکیک مکانی، طیفی و زمانی بالا بصورت همزمان است. بنابراین جهت پایش بسیاری از عوامل موجود در اکوسیستم‌های طبیعی از جمله آب، خاک و اتمسفر بکارگیری روشهای ریزمقیاس سازی در ادغام تصاویر دو یا چند سنجنده با قدرت تفکیک مکانی، رادیومتری و زمانی متفاوت راهگشا است. ریزگرد ها به خصوص ریزگردهای حاصل از فعالیت صنایع و معادن، جزء ذرات معلق اتمسفر هستند که شناسایی آنها از اهمیت بسیاری برخوردار است. پایش ریزگرد نیازمند به سنجنده ای است که همزمان دارای قدرت تفکیک رادیومتری، مکانی و زمانی بالا باشد که این امر در یک سنجنده عملا غیر ممکن است. بدین منظور می‌توان از تلفیق تصاویر سنجنده مودیس با قدرت تفکیک رادیومتری و زمانی بالا با تصاویر لندست با قدرت تفکیک مکانی بالا استفاده نمود. از جمله شاخص های معروف برای بارزسازی ریزگرد، شاخص NDDI است که با استفاده از طول موج های مادون قرمز میانی (2.1μm) و آبی (0.47 μm) بدست می آید. در این تحقیق سعی بر آن شد تا از چندین الگوریتم ریزمقیاس سازی از جمله Bovery، Gram-Shcmidt، STARFM، ESTARFM، wavelet، PBIM، SIFM و HPF برای ادغام تصاویر سنجنده های مودیس و لندست مربوط به تاریخ 8 ژولای 2016 استفاده شود و با نتایج حاصل نقشه های پهنه بندی شاخص NDDI تهیه گردد. نتایج ارزیابی نشان داد بهترین روش ادغام روش های STARFM و ESTARFM و PBIM است که با تصاویر سنجنده لندست دارای ضریب تبین( R2) به ترتیب 88/0، 91/0، 99/0 و با تصاویر مودیس 51/0، 5/0 و 57/0 می باشد. مجذور میانگین مربعات خطا (RMSE) برای هر سه روش بسیار ناچیز و به ترتیب 02/0، 004/0 و 055/0 برای تصاویراصلی لندست و 004/0، 06/0 و 1/0 برای تصاویر اصلی مودیس می باشد. بنابراین میتوان از روشهای STARFM و ESTARFM و PBIM جهت ترکیب تصاویر سنجنده مودیس و لندست به قصد افزایش قدرت تفکیک مکانی، طیفی و زمانی با دقت بالا استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of MODIS and OLI image downscaling methods for industrial dust detection

نویسندگان [English]

  • Mitra Shirazi 1
  • Mohammad akhavan GHalibaf 2
  • Hamidreza Matinfar 3
  • Mansour Nakhkesh 4
1 Ph.D. student of De-desertification, Faculty of Natural Resources and Desertification. Yazd University, Iran
2 Assistant Professor of Desert Group. Faculty of Natural Resources and Desertification. Yazd University, Iran
3 Associate Professor of Soil Science, Faculty of Agriculture, Lorestan University, Iran
4 Associate Professor of Telecommunication Group. Department of electrical engineering. Yazd University, Iran
چکیده [English]

One of the problems of most airborne and space-based sensors is the lack of high spatial, radiometric and temporal resolution, due to the high technical and sensor design costs. On the other hand, the identification and monitoring of the factors in natural ecosystems, such as water, soil, and atmosphere requires high spatial, radiometric and temporal resolution. Therefore, it is necessary using merge methods for integrating two or more spatial, radiometric and temporal resolution. Aerosols, especially dust of mines and industries, are part of the contaminate particles that are important in identifying them. Aerosol monitoring requires high spatial, radiometric and temporal resolution sensor, which is practically impossible in a sensor. For this purpose, it is possible to merge images with a high radiometric resolution like Modis and high spatial images like Landsat. One of the most popular indicators for dust detection is the NDDI index, which is obtained using SWIR (2.1μm) and blue (0.47 μm) wavelengths. In this research, we used several merging algorithms, including Bovery, Gram-Shcmidt, STARFM, ESTARFM, wavelet, PBIM, SIFM and HPF to integrate Modis and Landsat image data of 8 July 2016, and then provided NDDI index maps. The results of the evaluation showed that the best method was STARFM, ESTARFM, and PBIM with correlation coefficient (R2) of 0.88, 0.91, and 0.99, respectively with Landsat image and 0.51, 0.5, 0.57 with Modis image. The mean squared error (RMSE) for all three methods was negligible: 0.02, 0.400, and 0.055 respectively, with the original Landsat images and 0.004, 0.6 and 0.1 with the main images of Modis. Therefore, the STARFM, ESTARFM and PBIM methods could be used to merge Modis and Landsat images to extract data with high precision.

کلیدواژه‌ها [English]

  • Merging satellite data. Downscaling. NDDI index. Fusion method

-  Ackerman, S. A., 1989, Using the radioactive temperature difference at 3.7μm and 11μm o Trace dust outbreaks. Journal of Remote Sensing of Environment, 27)2( :129-133.

-  Atkinson, M., 2013. Downscaling in remote sensing. International Journal of Applied Earth Observation and Geoinformation, 22 (2013):106–114.

Bertina, H., Sayyad, G. A., Matinfar, H. and Hojjat, S., 2013., Dismantling of Dust Masses in the Middle East Based on Madis's Spectral Data. Journal of Natural Geographic Research (Geographical Research), 45( 4): 73 - 84.

-  Gangkofner, U. G., Pradhan, P. S. and Holcomb, D. W., 2008. Optimizing the high-pass filter addition technique for image fusion. Journal of Photogrammetric Engineering and Remote Sensing, 74(9): 1107-1118.

-  Gao, F., Masek, J. G., Schwaller, M. and Hall, F., 2006. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting daily landsat surface reflectance. Journal of IEEE Transactions on Geoscience and Remote Sensing, 44(8):2207-2218.

-  Guo, L.J. and Moore, J.M., 1998. Pixel block intensity modulation: adding spatial detail to TM band 6 thermal imagery. Journal of Remote Sensing, 19(13): 2477-2491.

-  Hilker, T., 2009, “Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Journal of Remote Sensing, Environment., 113(9):1988–1999.

-  Hilker, T., Wulder, M. A., Coops, N. C., Seitz, N., White, J. C., Gao, F., Masek, J. G. and Stenhouse, G., 2009, Generation of dense time series synthetic Landsat data through data blending with MODIS Using a Spatial and Temporal Adaptive Reflectance Fusion Model. Journal of Remote Sensing of Environment, 113(9): 1988-1999.

-  Holms, C. W. and Miller, R., 2004. Atmospherically transported metals and deposition in the southeastern United States, local or transoceanic. Journal of Applied Geochemistry, 19 (7) : 2000-1189.

-  Hwang, T., Song, C., Bolstad, P. V. and Band, L. B., 2011. Downscaling real-time vegetation dynamics by fusing multi-temporal MODIS and Landsat NDVI in topographically complex terrain. Journal of Remote Sensing of Environment, 115: 2499-2512.

-  Qu, J. J., Hao, X., Kafatos, M. and Wang, L., 2006. Asian dust storm monitoring combining terra and Aqua MODIS SRB Measurements. Journal of IEEE Geoscience and Remote, 3( 4): 484-486.

-  Jarihani, A. A., McVicar, T. R., Van Niel, T. G., Emelyanova, I. V., Callow, J. N. and Johansen, K., 2014. Blending Landsat and MODIS data to generate multispectral indices: a comparison of index-then-blend and blend-then-Index approaches. Journal of Remote Sensing, 6(10): 9213-9238.

-  Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A. and Holben, B. N, 1997. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research: Atmospheres, 102(14):17051-17067.

-  Kokhanovsky, A. A., Breon, F. M., Cacciari, A., Carboni, E., Diner, D., Nicolantonio, W. D., Grainger, R. G., Grey, W. M. F., Höller, R., Lee, K. H., Li, Z., North, P. R. J., Sayer, A. M., Thomas, G. E., von, H. and Huene, W., 2007. Aerosol remote sensing over land: a comparison of satellite retrievals using different algorithms and instruments. Journal of Remote Sensing, 85, 372-394.

-  Li, Z., Khananian, A., Fraser, R. H. and Cihlar, J., 2001. Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery geoscience and remote sensing. Journal of IEEE Transactions, 39(9):1859-1870.

-  Liu, J. G., 2000. Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details. Journal of Remote Sensing, 21(18): 3461-3472.

-  Mokhtari, M. and Busu, H., 2011. Downscaling albedo from moderate-resolution imaging spectroradiometer (MODIS) to advanced space-borne thermal emission and reflection radiometer (ASTER) over an agricultural area utilizing ASTER visible-near infrared spectral bands. International Journal of the Physical Sciences, 6(24): 5804-5821.

-  Pohl, C. and Van Genderen, J. L., 1998. Multisensor image fusion in remote sensing: Concepts, methods and applications. International Journal of Remote Sensing, 19(5):823–854.

-  Srivastava, P. K., Han, D., Ramirez, M. R. and Islam, T., 2013. Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Journal of Water Resources Management, 27 (8), 3127-3144

-  Rahimpour, M., Karimi, N., Roozbehani, R. and Rezaei, A., 2017. The combination of OLI and MODIS image sensors to produce surface-to-surface reflection data at a daily scale with a resolution of 30 meters in areas with different user diversity. Journal of Remote Sensing and GIS, 9(3):71-90.

-  Shirazi, M. and Akhavan, M., 2018. Evaluation of satellite imaging for detection of techno dusts in central Iran. XVIII Conference Docuchawvs Conference for Young Scientists. March 2-5.Pp. 146-140.

-  Stathopoulou, M. and Constantinos, C., 2009. Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Journal of Remote Sensing of Environment. 113: 2592-2605.

Taghavi, F., Ulad, E. and Irannejad, P., 2013. Detection and monitoring of dust storms in western Iran using remote sensing methods. Journal of Earth and Space Physics, 39(3) : 83-96.

-  Tasumi, M., Allen, R. G. and Trezza, R., 2008. At-surface reflectance and albedo from satellite for operational Calculation of land surface energy balance. Journal of Hydrologic Engineering, 13(2): 51-63.

-  Vrabel, J., 1996. Multispectral imagery band sharpening study. Journal of Photogrammetric Engineering and Remote Sensing, 62(9) : 1075-1083.

-  Wang,. L., 2005. Dust around type supernovae. The Astrophysical Journal, 635:L33–L36.

-  Wonsook, H., Prasanna, A., Gowda, H. and Terry, A., 2013. A review of potential image fusion methods for remote sensing-based irrigation management: part II. Journal of Springer-Verlag, 31(4): 851-862.

-  Ye, B., Ji, X. and Yang, H., 2003. Concentration and chemical composition of PM 2.5 in Shanghai for a 1 - year period. Journal of Atmospheric Environment, 37(4): 449 - 510.

-  Yingjie, L., Yong, X., Xingwei, H. and Guang, J., 2012, High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data. Journal of Atmospheric Environment. 46: 173-180.

-  Zhu, X., Chen, J., Gao, F., Chen, X. and Masek, J. G., 2010, An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions, Journal of remote sensing of environment, 114(11): 2610-2623.