تأثیر کاربری‌های جنگل، مرتع و کشاورزی و اقلیم و بیولوژی‌های فیزیکی و شیمیایی خاک در استان ایلام

فاطمه کرمی و مسعود بازگیر

1-دانش‌آموخته کارشناسی ارشد علوم خاک، دانشگاه کشاورزی، دانشگاه آزاد واحد ایلام، ایلام، ایران
2-ویژه‌نیروی مستندسازی، گروه مهندسی آب و خاک، دانشگاه کشاورزی، دانشگاه ایلام، ایلام، ایران پست الکترونیک: m.bazgir@ilam.ac.ir

تاریخ پذیرش: 09/08/1398

txt:

چکیده

کاربری‌های مختلف و اقلیم، نوع و ماده می‌باشد که بر خواص‌های فیزیکی و شیمیایی خاک تأثیر زیادی دارند. این پژوهش به مطالعه و بررسی تأثیر کاربری‌های مختلف و اقلیم خاک در استان ایلام می‌پردازد. بزرگداشت این در念 ابرار، بررسی مکانیزم تاثیرات کاربری معمول و اقلیمی خاک بر سطح سطحی و بیوتکسیولاریستیک و بیولوژی‌های فیزیکی و شیمیایی خاک در استان ایلام می‌باشد.

در این پژوهش آنالیز تأثیرات کاربری سطحی و بیوتکسیولاریستیک اقلیمی بر روی سطحی و بیولوژی‌های فیزیکی و شیمیایی خاک در استان ایلام می‌باشد.

مقدمه

تشكیل خاک تحت تأثیر پنج عامل اقلیمی می‌باشد که عامل جغرافیایی زنده بودن، میزان ماده اندور و زمان در شرایط غیرمعنی‌دارش و بیولوژی‌های خاکی که تمیزی نفتی و غذایی و بیولوژی‌های فیزیکی و شیمیایی خاک مانند بیشتر ضروریت است.

واژه‌های کلیدی: خاک، عامل اقلیمی، کاربری خاک، دانشگاه ایلام
خاک گردیده است. این تحقیقی در یک تواله اقیمی در استان گلستان انجام دادند. آنال و همکاران (2014) نشان دادند که این نوع خاک به هنگام شیوع بارندگی به تغییر و تغییر سالانه دچار می‌شود. از نظر رژیم‌های رطوبتی خاک دارد، مهمترین عامل تغییر گرداگرد و تحول خاک، است. (David و Auwal، 2015). به ارزیابی توزیع مواد صورت گرفت. خاک تحت تأثیر کاربری‌های خاک‌پروری با غلظت برداشت، عامل نشان داد که مقدار کشاورزی کرکن‌ها، خاک، نیتریز، و فسفر، تنش‌ساز و سولفور به طور نیازی به اجزای اکسی‌مرکب و است. می‌تواند به پیشرفت مقدار این خاک به ترتیب کاربری‌های گنجام می‌شود و میانگین اسیدنیت خاک بین 0.2 و 0.8 تا 2012 تا 0.8 تا 2012 است. تغییرات زایی‌ای در خاک‌های مختلف دارد. تغییر کاربری‌های جنگل و باغ به مزارع، بر توزیع عناصر مواد خاک و در دسترس بودن آنها تأثیر می‌گذارد. Datta و همکاران (2015) با بررسی ویژگی خاک‌های سبزی و اجزای کرکن‌ها در کاربری‌های مختلف شمالی گردیده به این نتیجه رسیدند که افزایش عمل جرم مخلوط‌های ظاهری، مقدار سیلت، رس مقدار اسیدنیت و همایشات بیکاتیک در صورت افزایش می‌یابد. این محققان پیشرفت مقدار کرکن‌ها را در خاک‌های تحت کشت مشاهده (Eucalyptus cameludensis Dehnh.) کردند که می‌تواند در دلیل وجود لاسترگ فرآهن و ترکبپایی و Hunke و همکاران (2013). خاک تحت تأثیر کاربری‌های مختلف در برخی نشان داد که تغییر کاربری اراضی مترج به کاهش تغییراتی خاک، کامیابی فیزیکی خاک، کامیابی افزایش اسیدنیت خاک می‌شود. شرایط آب و هوایی می‌تواند با میزان کمی آن آب ارتباط مستقیم و Soleimani و همکاران (2012) به بررسی تغییر کاربری اراضی بر بخش از خصوصیات فیزیکی و شیمیایی و فرسایش‌یابند، یک خاک در سه کاربری گنجگل زراعت دیم، گندم و (Triticum aestivum L.) و باعث برداشت و نشان دادند که میزان آب و حداکثر نیتروژن کل در دو لاخ خاک 0-10 و 0-20 در اراضی جنگلی. Jafari و Sarmadian (2007) وضعیت عناصر خاک به‌طور عمدی حاصل عناصر اقیمی در درامد است و به هنگام جهت این که تغییرات خاک نوع گیاهان و چگونگی رشد گیاهان با تغییر اقیمی تفاوت می‌یابد. (Supit et al، 2012). تغییرات کاربری زمین، نقش مهمی در تغییرات زمین و مکاپی ویژگی‌ها و کیفیت خاک دارد. (Zhao et al، 2013). تغییرات کاربری اراضی زمینی بر خصوصیات خاک. Biro et al، 2013. این تغییرات کاربری از جنبه اراضی کشاورزی بسیار مهم و مواد آمیابانه کامیاب یاد و این امر نمی‌تواند به کاهش پاوری خاک، افزایش میزان فرسایش، کامیابی آب آب و مواد و Biro et al، 2013. افزایش میزان تندیب و تغییر خاک می‌شود. (Muñoz-Rojas et al، 2015، 2013 خاک‌های اراضی جنگلی و مراتع به علت دارای بودن مواد آتی زیاد و ساختاری محوره مورد توجه بودند و لی تغییر در مدیریت و کاربری آنها و اعمال خاک‌پروری، عموماً تأثیر عمدی بر میزان آب و دیگر ویژگی‌های فیزیکی و شیمیایی خاک می‌گذارد. (2012) از دست رفتن ماده آتی اغلب در اثر تبدیل کوستی‌سازی طبیعی به کشاورزی اتفاق می‌افتد. (Vahabzadeh et al، 2016) Gholami و همکاران (2016) تازه نشان دادند که تبدیل مراتع به زمین‌های کشاورزی باعث کاهش چشمگیر ماده آتی خاک می‌شود. خصوصیات زایی‌های افزایش تولید کاتیونی، ماده آبی و تغییرات کلی با تبدیل اراضی از جنگل به کشاورزی کامیاب می‌یابد. (2010). یتیم گرفتن که تغییر کاربری Awotoye جنگل‌های صنعتی و طبیعی به راهکار کشاورزی باعث کامیاب می‌شود. (2013) نشان دادند که کاربری میزان ماده آتی خاک و میزان کابین کلسیم مواد می‌شود ولی تغییر کاربری اراضی تأثیر مصنوعی بر جرم مخلوط‌های ظاهری و میزان سیلت و سیز در محیط مختلف دارد. Rezapour و همکاران (2014) و سپس به‌طور مکرر تا دو روزه خاک را زراعت می‌کردند. مراجع و گنجگل نشان دادند که نوع کاربری تأثیر قابل توجهی بر نوع کاتی‌های رسی، شیمیایی و کاربری زراعت باعث کاهش کیفیت
مشاهده شد.

استان ایلام با مساحتی حدود 2015 کیلومترمربع
حدود 1/2 درصد مساحت کل کشور را تشکیل می‌دهد و از
تنویع اقلیمی و اکوسیستمی‌های طبیعی (تجهیز و مرتع)
و مدیریت
شد (شکاراوی) برخوردار است. این استان به دو قسمت
شمالی و جنوبی تقسیم می‌شود که در شمال استان به‌دلیل رشته‌کوه‌های بندر و مناطق جنگلی و سوسیال آب و هوای معتدل
و بخش در جنوب استان به‌دلیل دمای و اقلیمی گرم و خشک دارای پوشش گیاهی پراکنده می‌باشد. از سوی دیگر در
استان اراضی زراعی و جوگردانه بدون در نظر گرفتن قابلیت
و استعدادان تحت کاربری‌های مختلف قرار گرفته‌اند. از این رو
با توجه به اهمیت تأثیر کاربری‌های مختلف اراضی در
اقلیم‌های مختلف بر خصوصیات خاک، این مطالعه با هدف
بررسی ویژگی‌های فیزیکی و شیمیایی خاک در سه کاربری
تجهیز، مرتع و شکاراوی در دو اقلیم مختلف، یکی از مناطق
گنجون با اقلیم نیمه‌خشک و دیگری منطقه ایوان با اقلیم
نیمه‌مرطوب اجرا گردید.

مواد و روش‌ها

موفقیت منطقه مورد مطالعه
این تحقیق در سال 1395 در دو منطقه‌گنجون و ایوان در
استان ایلام آغاز شد (شکل 1). با توجه به اینکه یکی از
اهداف مطالعه تأثیر اقلیم بر ویژگی‌های فیزیکی و شیمیایی
خاک بود، از مناطق در استان با اقلیم مختلف شامل شهرستان
ایوان در شمال استان و خاک گنجون در جنوب استان
و گزارش شهرستان جوار از توابع شهر ایلام انتخاب گردید.
منطقه گنجون در 76 کیلومتری شهرستان ایلام در محدوده
135 درجه و 45 دقیقه عرض شمالی و 50 درجه و 48 دقیقه طول
شمالی با ارتفاع 70 متر از سطح دریا واقع شده است. میانگین
سالانه بارندگی و دما در گنجون به ترتیب 329/6 میلی‌متر و
47/5 درجه سانتی‌گراد بوده و بر اساس طبقه‌بندی دومارتین
نیمه‌خشک می‌باشد. شهرستان ایوان در 40 کیلومتری شهر ایلام
قرار دارد که بین 46 درجه و 19 دقیقه طول شرقی و 33 درجه
و 5 دقیقه عرض شمالی قرار گرفته است. ارتفاع منطقه از
سطح دریا حدود 110 متر است. منطقه مذکور بر اساس
طبقه‌بندی دومارتین دارای اقلیم نیمه‌مرطوب و میانگین بارندگی
سالانه 75 میلی‌متر و دمای متوسط سالانه آن 17 درجه
سانتی‌گراد است.

روش بررسی

انتحاب سایت‌های مطالعاتی
به‌منظور بررسی خصوصیات فیزیکی و شیمیایی خاک،
سه نوع کاربری زمین شامل تجید، مرتع و زراعت انتخاب
گردید. در هر دو منطقه ایوان و گنجون، بخش‌هایی از این
کاربری‌ها به صورت پیوسته به هم بودند و حداکثر اختلاف
ارتفاع از سطح دریا و جهت شیب در آنها مشاهده شده بود.
انتحاب شدند. بخش غالب بخش‌های جنگلی این مناطق
Quercus brantii (Lindl.) می‌باشد. اراضی زراعی در دو منطقه به مدت زمان
طولانی، به‌طور عمده زیر کشت گندم است. بخش‌هایی
کاربری مرتع شامل علفزار و بیوتورماری‌ها، که گیاهان
غلاب آن را خارج‌کرده (Alhagi camelorum Fisch.). بیشتر
Astragalus (Dactylicl stem glomerata) پای (Euphorbia helioscopia (bisulcatus Hook.)
فرفیون) و خار زرد
(Hordeum murinum L.) (Cardus pycocephalus L.) (حور وخشش
تشکیل می‌دهد.

نمونه‌برداری از خاک
پس از بازدید و شناسایی دقت هر منطقه، با استفاده از
دستگاه موضع‌گیری جهانی (GPS) دستگاه موضع‌گیری جهانی (GPS)
در هر کاربری بک‌پلات (GPS) دستگاه موضع‌گیری جهانی (GPS)
50×50 متر طراحی گردید. به‌منظور نمونه‌برداری از خاک، از
هر بک‌پلاط به‌صورت تصادفی نمی‌توان مربک با سه تکرار از
عمق‌های سطحی (0–10 سانتی‌متر) و تحتانی (10–30 سانتی‌متر)
سنانتی متری (Zobeiry، 2009) نمونه‌های خاک برداشت شدند. نمونه‌های جمع‌آوری شده به آزمایشگاه خاک‌شناسی دانشگاه ایلام انتقال یافته‌اند. در جدول ۱ مختصات جغرافیایی و ارتفاع از تأثیر کاربردهای جنگلی، مرتع و...

![شکل ۱- موقعیت مناطق مورد مطالعه در ایران و استان ایلام](image)

درصد انگین شد. رسم نمودارها نیز با Excel درصد انگیز است. این یافته‌ها نیز با تجزیه و تحلیل آماری داده‌ها آزمایش به‌صورت فاکتوریل در قالب طرح یا به‌کمک تصادفی با نهج تکرار انجام شد. فاکتورهای آزمایش شامل اقلیم در دو سطح (تپه‌خشک-گنجگان و شیم‌مرطوب-ایوان) و انرژی اراضی در سه سطح (کشاورزی، جنگل و مرتع) و عمق خاک در دو سطح عمق سطحی (۱-۳۰ سانتی‌متری خاک) و عمق تربیتی (۳-۱۰۰ سانتی‌متری خاک) بودند. تجزیه آماری داده‌های آزمایش با نرم‌افزار SAS و مقایسه میانگین‌ها نیز با روش حداکثر اختلاف معنی‌دار (LSD) در سطح احتمال نیز با انجام گردید.
جدول 1- مختصات جغرافیایی و ارتفاع از سطح دریا برای نقاط نمونه‌برداری خاک در دو منطقه گنجوان و ایوان

<table>
<thead>
<tr>
<th>رشته‌های جغرافیایی</th>
<th>عرض جغرافیایی</th>
<th>ارتفاع (متر)</th>
<th>کاربری</th>
<th>منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>14° 20' 59" N</td>
<td>115° 23' 51" E</td>
<td>1130</td>
<td></td>
<td>گنجوان</td>
</tr>
<tr>
<td>14° 20' 58" N</td>
<td>115° 23' 55" E</td>
<td>1129</td>
<td></td>
<td>گنجوان</td>
</tr>
<tr>
<td>14° 20' 56" N</td>
<td>115° 23' 54" E</td>
<td>1128</td>
<td></td>
<td>گنجوان</td>
</tr>
<tr>
<td>14° 20' 55" N</td>
<td>115° 23' 53" E</td>
<td>1127</td>
<td></td>
<td>گنجوان</td>
</tr>
<tr>
<td>14° 20' 54" N</td>
<td>115° 23' 52" E</td>
<td>1126</td>
<td></td>
<td>گنجوان</td>
</tr>
<tr>
<td>14° 20' 53" N</td>
<td>115° 23' 51" E</td>
<td>1125</td>
<td></td>
<td>گنجوان</td>
</tr>
<tr>
<td>14° 20' 52" N</td>
<td>115° 23' 50" E</td>
<td>1124</td>
<td></td>
<td>گنجوان</td>
</tr>
<tr>
<td>14° 20' 51" N</td>
<td>115° 23' 49" E</td>
<td>1123</td>
<td></td>
<td>گنجوان</td>
</tr>
</tbody>
</table>

نتایج احصایی:
- گنجوان:
 - بررسی نمونه‌برداری خاک در دو منطقه گنجوان و ایوان.
 - ارتفاع از سطح دریا برای نقاط نمونه‌برداری خاک.

- ایوان:
 - بررسی نمونه‌برداری خاک در دو منطقه گنجوان و ایوان.
 - ارتفاع از سطح دریا برای نقاط نمونه‌برداری خاک.
نتایج آمارهای توصیفی خصوصیات فیزیکی و شیمیایی خاک

جدول ۲- آمار توصیفی ویژگی‌های فیزیکی شاخص جرم

<table>
<thead>
<tr>
<th>خصوصیات خاک</th>
<th>جرم مخصوص ظاهري (گرم بر سانتی‌متر مکعب)</th>
<th>1/87</th>
<th>1/87</th>
<th>20/87</th>
<th>0/00</th>
<th>1/00</th>
</tr>
</thead>
<tbody>
<tr>
<td>آهک (درصد)</td>
<td>1/87</td>
<td>20/87</td>
<td>0/00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رس (درصد)</td>
<td>20/87</td>
<td>0/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سیلت (درصد)</td>
<td>0/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شن (درصد)</td>
<td>0/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ماده آلی (درصد)</td>
<td>0/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیترورژن کل (درصد)</td>
<td>0/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فسفر قابل جذب (میلی‌گرم در کیلوگرم)</td>
<td>0/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>یتیسم قابل جذب (میلی‌گرم در کیلوگرم)</td>
<td>0/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کلسیم محلول (میلی‌گیلوسیت در لیتر)</td>
<td>0/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مزیت محلول (میلی‌گیلوسیت در لیتر)</td>
<td>0/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نیمه‌خشک گنجون افراشی بایست. بسته و نیم‌مقدار جرم مخصوص ظاهري (78 گرم بر سانتی‌متر مکعب) در اقلیم مخصوص ظاهري تحت تأثیر کاربری کشاورزی در عمق تحتانی خاک به‌دست آمد (شکل ۲). در اقلیم مخصوص ظاهري (80 گرم بر سانتی‌متر مکعب) در اقلیم مخصوص ظاهري تحت تأثیر کاربری کشاورزی به‌دست آمد. در اقلیم مخصوص ظاهري تحت تأثیر کاربری کشاورزی به‌دست آمد. در اقلیم مخصوص ظاهري تحت تأثیر کاربری کشاورزی به‌دست آمد.

ویژگی‌های فیزیکی خاک

نتایج تجزیه واریانس داده‌ها نشان‌دهنده معیار دار بودن اثرهای اقلیمی، کاربری اراضی، عمق خاک، اثرهای متقابل دوگانه (اقلیمی×کاربری اراضی)، (کاربری اراضی×عمق خاک) و اثرهای متقابل سهگانه (اقلیمی×کاربری اراضی×عمق خاک) بر جرم مخصوص ظاهري خاک در سطح احتمال یک درصد (جدول ۳). اثرهای اقلیم و کاربری اراضی بر ذرات رس، سیلت و آهک در سطح احتمال یک درصد معنادار گردید. مقدار معنادار در در سطح احتمال یک درصد متقابل دوگانه (اقلیمی×عمق خاک) در سطح احتمال یک درصد قرار گرفت.

(جدول ۳)

با افزایش عمق خاک، جرم مخصوص ظاهری در کاربری‌های مختلف در هر دو اقلیم نیمه‌خشک گنجون و
جدول ۳- تجزیه و اریان اثرهای اقلیم، کاربری اراضی و عمق خاک بر ویژگی‌های فیزیکی خاک

<table>
<thead>
<tr>
<th>میانگین مربوطات</th>
<th>جرم مخصوص ظاهري</th>
<th>درجه</th>
<th>منابع تغییرات</th>
<th>آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شن</td>
<td>رس</td>
<td>سیلت</td>
<td>شن</td>
<td>رس</td>
</tr>
<tr>
<td>۲۶</td>
<td>۹۵</td>
<td>۴</td>
<td>۹</td>
<td>۷۵</td>
</tr>
<tr>
<td>۲۸</td>
<td>۱۶۵</td>
<td>۴</td>
<td>۹</td>
<td>۷۱</td>
</tr>
<tr>
<td>۳۴</td>
<td>۱۴۶</td>
<td>۴</td>
<td>۹</td>
<td>۷</td>
</tr>
<tr>
<td>۴۴</td>
<td>۲۹</td>
<td>۴</td>
<td>۹</td>
<td>۷</td>
</tr>
</tbody>
</table>

ضراپ تغییرات (درصد) - **: بهترین معنی دار در سطح احتمال بین و یک درصد; *: غیرمعنی‌دار

شکل ۲- جرم مخصوص ظاهري خاک تحت تأثیر کاربری اراضی در دو اقلیم نیمه‌مرطوب و نیمه‌خشک در عمق‌های مختلف خاک
پیش‌ترین مقدار آمک خاک (77/8/20 درصد) در اقلیم نیمه‌خشک به‌دست آمد که در اقلیم نیمه‌مروطب بود. پیش‌ترین (7/22 درصد) و کمترین (7/42 درصد) مقدار آمک خاک پیش‌ترین در کاربری گرشواری و جنگل مشاهده گردید (جدول 4). در اقلیم نیمه‌مروطب به‌دست آمد که در مقایسه با اقلیم نیمه‌خشک (5/2/20 درصد بیش‌تر بود (جدول 4). پیش‌ترین (7/67/20 درصد) و کمترین (7/56/70) مقدار رس به‌خود اخ‌صوص داده. پیش‌ترین میزان شن (54/95 درصد) در کاربری گرشواری مشاهده گردید و کاربری‌های جنگل و مرتع کمترین میزان شن را داشتند (جدول 4).

جدول 4- تأثیر اقلیم و کاربری اراضی بر ذرات مختلف خاک

<table>
<thead>
<tr>
<th>اقلیم</th>
<th>تیمار</th>
<th>رس (درصد)</th>
<th>سیلت (درصد)</th>
<th>شن (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>اقلیم نیمه‌خشک</td>
<td>25/4/22 ± 2/2/28</td>
<td>27/9/30 ± 2/2/39</td>
<td>35/9/32 ± 2/2/39</td>
<td></td>
</tr>
</tbody>
</table>

خره مشترک در هر سیترون بر اساس آزمون جدای اختلاف معنی‌دار (LSD) در سطح احتمال 5 درصد اختلاف معنی‌داری با هم ندارند.

در عمق سطحی خاک، پیش‌ترین میزان شن (77/4/20 درصد) در اقلیم نیمه‌مروطب به‌دست آمد که در مقایسه با اقلیم نیمه‌خشک (18/5/28 درصد بیش‌تر بود. اما در عمق تحتانی خاک در اقلیم شن با هم تفاوت معنی‌داری نداشتند (شکل 4).
کاربری اراضی و اثرهای منتفی دوگانه (اقلیم × کاربری اراضی) تأثیر معنی‌داری بر فسفر و پتاسیم قابل جذب داشت. همچنین، فسفر قابل جذب تحت تأثیر اثرهای منتفی دوگانه (اقلیم × کاربری اراضی) قرار گرفتند (جدول 5). اثرهای اقلیم، کاربری اراضی، عمق خاک، اثرهای منتفی دوگانه (اقلیم × کاربری اراضی) و اثرهای منتفی سگانه (اقلیم × کاربری اراضی) بر منیزیم محلول معنی‌دار (P<0.01) بود (جدول 5).

جدول 5- تجزیه واریانس اثرهای اقلیم، کاربری اراضی و عمق خاک بر ویژگی‌های شیمیایی خاک

<table>
<thead>
<tr>
<th>منابع تغییرات Azadeh</th>
<th>درجه</th>
<th>ماده آلی</th>
<th>نیتروژن</th>
<th>فسفر</th>
<th>پتاسیم</th>
<th>کلسیم مینیزیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>اقلیم</td>
<td>1</td>
<td>4/38</td>
<td>6/85</td>
<td>2/34</td>
<td>3/83</td>
<td>7/74</td>
</tr>
<tr>
<td>کاربری اراضی</td>
<td>2</td>
<td>2/84</td>
<td>7/96</td>
<td>3/96</td>
<td>8/36</td>
<td>9/07</td>
</tr>
<tr>
<td>عمق خاک</td>
<td>5</td>
<td>2/82</td>
<td>9/14</td>
<td>0/75</td>
<td>0/85</td>
<td>6/94</td>
</tr>
<tr>
<td>اقلیم × کاربری اراضی</td>
<td>2</td>
<td>1/97</td>
<td>8/24</td>
<td>4/85</td>
<td>2/34</td>
<td>7/84</td>
</tr>
<tr>
<td>اقلیم × عمق خاک</td>
<td>4</td>
<td>0/84</td>
<td>0/75</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
</tr>
<tr>
<td>کاربری اراضی × عمق خاک</td>
<td>2</td>
<td>0/84</td>
<td>0/75</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
</tr>
<tr>
<td>اقلیم × کاربری اراضی × عمق خاک</td>
<td>2</td>
<td>0/84</td>
<td>0/75</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
</tr>
</tbody>
</table>

خطای آزمایشی

ضرایب تغییرات (درصد)
عمر اختلاف معنی "داری مدفوع" میزان فسفر ۲۷۵/۲۰۰۴ (۳/۷/۱۲۲) میلی‌گرم در کیلوگرم خاک به آن در کاربری جنگل در اقلیم داری مدفوع و کاربری جنگل در اقلیم داری مدفوع به‌دست آمد (جدول ۶). در اقلیم داری مدفوع، بین فسفر قابل جذب خاک کاربری مرتع و کشاورزی معنی‌داری مشاهده نگردید. اما در اقلیم داری مدفوع فسفر قابل جذب خاک در کاربری کشاورزی بیشتر از غلظت آن در کاربری مرتع بود (۵/۱۹۳). بیشترین مقدار فسفر قابل جذب خاک در میزان فسفر قابل جذب خاک (۹/۲۰۱) به کاربری جنگل در اقلیم داری مدفوع و کاربری جنگل در اقلیم داری مدفوع تأثیر گذاشته شد. این تفاوت مشاهده نشد. از دیل‌های این امر می‌توان به کاهش ذرات رس در خاک‌های کشاورزی اشاره کرد. همچنین جذب فسفر توسط گیاهان و خروج آن به دلیل برداشت محصول از دیگر عوامل کاهش فسفر خاک در اثر کشاورزی است. این فاصله کاهش نسبی مهم‌ترین سازوکار Yousefifar et al. (2007) برای نگه‌داری فسفر از کاربری زراعی است. در کاربری کشاورزی می‌توان کاهش فسفر را به وجود فرسایش نسبت داد که موجب هدرفت فسفر در این کاربری شده است که با تناوب به‌دست دارد و همگر میزان فسفر از کاربری جنگل به زراعت با تناوب تا همگر میزان ۲۰۱۳ (۳/۷/۱۲۲) که کاهش چهار برابر فسفر را گزارش Marmarai و Niknahad (۲۰۱۱) می‌دارند، مطالعات دارد. کاهش و Tajari در استان گلستان پایین تر بود. این مقدار فسفر قابل جذب در اراضی کشاورزی نسبت به اراضی جنگل گزارش نموده. افزایش مقدار فسفر خاک در کاربری مرتع را می‌توان به میزان ماده آلی خاک در اقلیم داری مدفوع بیشتر از اقلیم داری مدفوع نیمه‌خشک بود (جدول ۶). بیشترین میزان ماده آلی خاک در عدد آمد که ۲۴/۸۵ درصد بیشتر از اقلیم داری مدفوع بود. همچنین، ماده آلی خاک در کاربری جنگل در اقلیم داری مدفوع در مقایسه با کاربری کشاورزی بیشتر (۵/۵۵۶ و ۳/۷۰۶ درصد بیشتر بود (جدول ۶). میزان ماده آلی خاک در کاربری مرتع در مقایسه با کاربری کشاورزی در اقلیم داری مدفوع کاهش ۲۰۱۳ (۳/۷/۱۲۲) که در کاربری جنگل در اقلیم داری مدفوع میزان ماده آلی خاک در کاربری مرتع در مقایسه با کاربری کشاورزی (۳/۷/۱۲۲) بود (جدول ۶). میزان ماده آلی خاک در کاربری جنگل در اقلیم داری مدفوع مختلف کاهش داشت. اینها لازم است به‌آوری شود که در مجموع کاربری جنگل از سطح ماده آلی خاک بالاتری در مقایسه با کاربری مرتع و کشاورزی برخوردار بود. بیشترین میزان ماده آلی خاک (۲/۶۵۰ درصد) در کاربری جنگل در اقلیم داری مدفوع سطحی خاک بیشتر نبود. بیشترین میزان ماده آلی خاک کاهش یافت (جدول ۶).
جدول 6- ماده آلی و غلظت عناصر خاک تحت تأثیر کاربری اراضی در دو اقلیم نیمه‌خشک و نیمه‌مطروح

<table>
<thead>
<tr>
<th>کاربری</th>
<th>نیتروژن (میلی‌گرم در کیلون)</th>
<th>ماده آلی (درصد)</th>
<th>اقلیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>کشاورزی</td>
<td>187 ± 78</td>
<td>0.3 ± 0.2</td>
<td>40 ± 4</td>
</tr>
<tr>
<td>نیمه‌مطروح</td>
<td>23 ± 12</td>
<td>0.5 ± 0.4</td>
<td>10 ± 1</td>
</tr>
<tr>
<td>گنجنگ</td>
<td>18 ± 7</td>
<td>0.3 ± 0.2</td>
<td>40 ± 4</td>
</tr>
<tr>
<td>مرجع</td>
<td>23 ± 12</td>
<td>0.5 ± 0.4</td>
<td>10 ± 1</td>
</tr>
</tbody>
</table>

جدول 7- ماده آلی و غلظت عناصر خاک تحت تأثیر کاربری اراضی در دو عمق مختلف خاک

<table>
<thead>
<tr>
<th>کاربری</th>
<th>نیتروژن (میلی‌گرم در کیلون)</th>
<th>ماده آلی (درصد)</th>
<th>عمق</th>
</tr>
</thead>
<tbody>
<tr>
<td>کشاورزی</td>
<td>200 ± 117</td>
<td>0.3 ± 0.2</td>
<td>سطحی</td>
</tr>
<tr>
<td>نیمه‌مطروح</td>
<td>200 ± 117</td>
<td>0.3 ± 0.2</td>
<td>مرجع</td>
</tr>
<tr>
<td>گنجنگ</td>
<td>200 ± 117</td>
<td>0.3 ± 0.2</td>
<td>سطحی</td>
</tr>
<tr>
<td>مرجع</td>
<td>200 ± 117</td>
<td>0.3 ± 0.2</td>
<td>مرجع</td>
</tr>
</tbody>
</table>

میزان اثر انگشتی فضول در سطح خاک بر اثر تردد دام به هم خوردن خاک سطحی نسبت داد. از انواع فسفر در خاک توسط معا آلی جذب سطحی می‌شود و از فرسایش آن جلوگیری به عمل می‌آورد. غلظت فسفر در عنصر سطحی خاک بیشتر از عمق تحتانی خاک در کاربری‌های مختلف است. در خاک‌های اقلیم نیمه‌مطروح که میزان رس بالاتری دارند مقادیر فسفر و نیتروژن کم‌تر بوده است. وجود رس سبب
تأثیر کاربری‌های جنگلی، مرتع و کاری کشاورزی تحت تأثیر عمق قرار گرفت و کمترین میزان آن علائم را داشتند (جدول 8).

پیش‌ترین مقدار منفی محلول خاک (میلی‌آگی و/یا آلان در لیتر) در اقلیم نیمه‌مرطوب، پیش‌ترین مقدار کلسیم محلول خاک (میلی‌آگی) و/یا آلان در لیتر) در اقلیم تأثیر کاری کشاورزی جنگل در عمق تحتانی خاک (و دسته آمده) که کاری مرتع در عمق سطحی خاک اختلال می‌بایستند نشان داد (جدول 8)، به‌طوری‌که کاری کشاورزی در اقلیم نیمه‌خشک در عمق تحتانی خاک میزان این صفت را به خود اختصاص داد (جدول 8).

جدول 8- عناصر غذایی خاک تحت تأثیر کاربری‌های اراضی در دو عمق مختلف خاک

<table>
<thead>
<tr>
<th>عمق</th>
<th>کاربری اراضی</th>
<th>نیمه‌مرطوب (میلی‌آگی)</th>
<th>نیمه‌مرطوب (آلان در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/84 ± 0/1</td>
<td>1/84 ± 0/1</td>
<td>1/84 ± 0/1</td>
<td></td>
</tr>
<tr>
<td>0/22 ± 0/1</td>
<td>0/22 ± 0/1</td>
<td>0/22 ± 0/1</td>
<td></td>
</tr>
<tr>
<td>1/84 ± 0/1</td>
<td>1/84 ± 0/1</td>
<td>1/84 ± 0/1</td>
<td></td>
</tr>
<tr>
<td>0/22 ± 0/1</td>
<td>0/22 ± 0/1</td>
<td>0/22 ± 0/1</td>
<td></td>
</tr>
<tr>
<td>1/84 ± 0/1</td>
<td>1/84 ± 0/1</td>
<td>1/84 ± 0/1</td>
<td></td>
</tr>
<tr>
<td>0/22 ± 0/1</td>
<td>0/22 ± 0/1</td>
<td>0/22 ± 0/1</td>
<td></td>
</tr>
<tr>
<td>1/84 ± 0/1</td>
<td>1/84 ± 0/1</td>
<td>1/84 ± 0/1</td>
<td></td>
</tr>
<tr>
<td>0/22 ± 0/1</td>
<td>0/22 ± 0/1</td>
<td>0/22 ± 0/1</td>
<td></td>
</tr>
</tbody>
</table>

حروف مشترک در هر ستون، بر اساس آزمون اختلاف معناداری به‌های ندارند.

بحث

پژوهش‌های نیز به‌خصوص که در کاری‌های مورد مطالعه، با افزایش عمق خاک، جرم مخصص ظاهروی افزایش یافته است. همچنین، خاک‌های کشاورزی نسبت به خاک‌های جنگل و مرتع جرم مخصوص ظاهروی بالاتری داشته، دلیل این امر احتمالاً می‌باشد که نسبت به داشتن شرایط بی‌هویه و نیز نسبت به داشتن در Steffens و Steffens (2008)، نیز به تأثیر منفی چرای دام بر جرم مخصوص ظاهروی خاک افزایش یافته است. غولامی و Gholami یافته است.
مخصوص صوره‌ها خان اشاره کردن. عامل اصلی تفاوت جرم مخصوص صوره‌ها در دو اقلیم نیمه‌شکن و نیمه‌مروطب را می‌توان به وجود مواد آلی پیشتر در اقلیم نیمه‌مروطب نسبت داد که به ناتیج پیدا آمده توسط García-Orenes و همکاران (2005) مطابقت دارد. بنابراین، می‌توان نتیجه گرفت که جرم مخصوص صوره‌ها خان در ارتباط با ماده آلی خاک و نفوذ به‌پردازی از زیمن باشد.

میزان آلک در اقلیم نیمه‌مروطب کمتر از نیمه‌شکن بود. بنابراین به پیشنهاد بیشتر در منطقه ایونه به نظر میداشته که ن技术支持 این رشد در این اقلیم دیگری می‌توان آلک کمتر منطقه ایونه را به یک بود ماده آلی در این اقلیم نسبت داد. ماده آلی با به‌پردازی دسته‌ای کردن به‌طور بیشتر خان باعث می‌شود که آلک خان کم شود (2012). همچنین آلک توسط آب و باران به پیکرات‌های محلول تبدیل شده و به قسمت‌هایی که قرار می‌شود باعث خاک و همکاران (2008). در اثر انتقال آلیات خاکی سبب شده تا لایه‌های باقی به‌طور بیشتر با سطح بالایی خاک تندیک شده و به‌طور بیشتر به قرار می‌گرفتن در لایه‌های فوقانی و محلول شده با آن، درصد آلک خاک سطحی را افزایش می‌دهد. رابط مشابه توسط Riahi و همکاران (2016) به‌طور آمیز. باعث شدن خاک فلزات از سلک‌های مادی، خصوصیات زمین‌شناسی، اقلیمی و آبی. در منطقه گنج‌زای اکسپانسیون سطحی توسط پیشنهادی می‌تواند باشد (2012). نتیجه گرفتن در اکسپانسیون رس در خاک زراعی کمتر بود. کاهش میزان رس، رس در اثر و گرفتن رس در اثر اکسپانسیون رس، رس در اثر و گرفتن رس در اثر نیمه‌مروطب با وابستگی به آلیات خاک در اکسپانسیون رس، رس در اثر و گرفتن رس در اثر خاکی سفید و خارج شدن ذرات رس توسط روئینگ هس سطحی نسبت داد.
شکل تولیدی بعـضور مـحصول برداشت شده از زمین

خرای مـشود. بنابراین کـریم وروـدی کـمتر و کـریم خرـوفی
پیشت در این اراضی مـتواند از لاـبیل عـدم کاـهش میزان
کریم آنی در این خاکها باشد. میزان ماده آلی خاک در
اـقلیم نیمه مرطوب پیشت از اقلیم نیمه خشک دو
(2007) نشان داد که ماده آلی خاک تحت
اـقلیم مرـطوب و سرد نسبت به اقلیم خـشکتر در یک توالی
اقلیمی پیشت تجمع می‌آید. بهطور کلی، عمق سطحی در
مقایسه با عمق تحتانی، به علت ورود پیشت یکتا و مواد
گیاهی تازه و آلی مقادیر بیشتری از ماده آلی را دارا بود.
و همکاران (2014) نشان دادند که میزان
ماده آلی در اراضی زراعی و مرطوب در مقایسه با کاربری
کنگلی، کاهش پیش از 35/70 و 35/85 درصد در عمق
3/70 سانتی‌متری در کاربری گنجنگ، به میزان
3/70 درصد و حداقل آن در عمق 2/70 سانتی‌متری در
برای 35/75 درصد را نشان داد. جفتی‌گانی ظاهری، اسیدیت
و میزان شن خاک با نتیجه کاربری گنجنگ، افزایش و تخلخل
و نیمه خشک کمک کمبود رطوبت از عاملی مؤثر کمبود نیتروژن قابل
Jafari & Sarmadian,
استفاده برای گیاهان در خاک است (2007).

طبق این نتایج، کاربری شاکوزی موجب کاهش
میزان دار در عمق ماده آلی و نیتروژن خاک شده است که این
مطالعه نشان داد که میزان شیت کاهش حاصلی خاک، کاهش
عملکرد و مستعد شدن اراضی برای فرسایش گرد. روند
تغییرات مقدار نیتروژن خاک، مشابه ماده آلی بود. زیرا
بیش عمد نیتروژن خاک به شکل نیتروژن آلی ایست. در
هر دو اقلیم نیمه مرطوب و نیمه خشک، کاربری گنجنگ
بیشتری مقدار نیتروژن را دارد. در اراضی زراعی مصرف
نامعاد کوده‌های مقداره به‌طور گزارش که بطور
محمول بدون استفاده از کوده‌های آلی به خاک افزوده
می‌شود، می‌تواند به‌طور هم تعداد خاک و نسبت کریم
به نیتروژن دلیل تجربه پیشت موارد آلی را فراهم کند.

Bouyoucos, G. J., 1962. Hydrometer method

Impact of Forest, Rangeland and Agriculture Land Uses and Climate on Soil Physical and Chemical Properties in Ilam Province

F. Karami¹ and M. Bazgir²

¹- M.Sc. Graduate, Department of Soil Science, Islamic Azad Ilam University, Ilam, Iran
²- Corresponding author, Assistant Professor, Department of Soil and Water Engineering, Ilam University, Ilam, Iran, Email: m.bazgir@ilam.ac.ir

Received: 01/19/2019 Accepted: 05/19/2019

Abstract

Climate and land use are two important factors which are greatly influence on soil physical and chemical properties. This research was conducted to study the effects of climate and land use on physical and chemical properties of soil in Ilam province in 2016. After initial studies, Ivan area with semi-humid climate and Ganjavan with semi-arid climate in Ilam province were selected. In each region, three land uses including forest, rangeland and agricultural were considered. After field studies in each land use, five soil samples were taken from 0-10cm and 10-30cm depths and collected randomly. The results showed that the highest amount of soil lime (47.85%) and soil silt (31.75%) were obtained in semi-arid climate of Ganjavan. The soils of Ayvan as a semi-humid climate had the highest amount of clay and K available. The highest bulk density (1.87 g.cm⁻³) was obtained in semi-arid climate of Ganjavan under the effect of agricultural use at lower soil depth. The lowest amount of bulk density (1.08 g.cm⁻³) was observed in semi-humid climate of Ayvan in the soil surface depth under forest land use. The highest amount of organic matter was obtained in forest land use in semi-humid climate in Ayvan, (42.85%) which was more than semi-arid climate of Ganjavan. Agricultural land use had the lowest amount of organic matter (4.37%). The highest amount of N (0.514%) and P (35.04 mg kg⁻¹) concentrations were obtained in forest land use in the semi-humid climate of Ayvan. The amount of Ca and Mg concentration in subsoil solution (10-30cm) layer was higher than topsoil solution (0-10cm) layer in Ayvan. In general, by changing land use from forest to farm, the percentage of clay, organic matter, nitrogen, phosphorus, and potassium available decreased in semi-arid climates of Ganjavan. Therefore, proper land use management in semi-arid climates is essential for optimal preservation of soil properties.

Keywords: Climate, soil texture, soil nutrition, land use, organic matter.