- Adam, E., Abd Elbasit, M.A.M., Adelabu, S.A. and Bande, P., 2018. Comparing landsat 8 and sentinel 2 in mapping water quality at VAAL DAM. Conference: International Geoscience and Remote Sensing Symposium At: Valencia, Spain, 9781-5386-7150-4.
- Afrasinei, G., Melis, M., Buttau, C., Bradd, J. and Arras, C., 2017. Assessment of remote sensing-based classification methods for change detection of salt-affected areas (Biskra area, Algeria). Journal of Applied Remote Sensing, 11 (1): 016025.
- Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J., 1984. Classification and regression trees, Wadsworth and Brooks/Cole, 358 p.
- Culman, S.W., Gauch, H.G., Blackwood, C.B. and Thies, J.E., 2008. Analysis of T-RFLP data using analysis of variance and ordination methods: a comparative study. Journal of Microbiological Methods, 75 (1): 55-63.
- Dogan, O.K., Akyurek, Z. and Beklioglu, M., 2009. Identification and mapping of submerged plants in a shallow lake using quickbird satellite data. Journal of environmental management, 90 (7): 2138-2143.
- Duffy, J.P., Pratt, L., Anderson, K., Land, P.E. and Shutler, J.D., 2018. Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone. Estuarine, Coastal and Shelf Science, 200: 169-180.
- Feng, D., Yu, L., Zhao, Y., Cheng, Y., Xu, Y., Li, C. and Gong, P., 2018. A multiple dataset approach for 30-m resolution land cover mapping: A case study of continental Africa. International Journal of Remote Sensing, 39 (12): 3926–3938.
- Ge, G., Shi, Z., Zhu, Y., Yang, X. and Hao, Y., 2020. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms.
Global Ecology and Conservation, 22: e00971.
- Huete, A., 2004. Remote Sensing for Natural Resources Management and Enviromental Monitoring: Manual of remote sensing, Univercity of California, Davis, 3 edition, 4.
- Hurskainen, P., Adhikari, H., Siljander, M., Pellikka, P.K.E. and Hemp, A., 2019. Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes.
Remote Sensing of Environment, 233: 111354.
- Jafari, Sh., Rahimi, Kh. and Arazzadeh, Y., 2012. Land use mapping using Google Earth data (Case study: Karaj). Sixth National Conference and Specialized Exhibition of Environmental Engineering, Tehran, https: //civilica.com/doc/170175. (In Persian).
- Jia, K., Wei, X., Gu, X., Yao, Y., Xie, X. and Li, B., 2014. Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto International, 29 (8): 941- 951.
- Jiang, X.B., Zhou, Q.G. and Li, A.N., 2004. Landscape pattern of Diqing, Yunnan. Journal of Mountain Research, 22: 164-168.
- Kashi Zenouzi, L., Saadat, H. and Namdar, M., 2016. Comparison between the accuracy of geomorphological map using traditional and analytical photogrammetry methods (Case study: Harzand chai waters). Geographical data, 97 (25): 57-66. (In Persian).
- Koomen, E., Stillwell, J., Bakema, A. and Scholten, H.J., 2007. Modelling land-use change. Progress and Applications, Springer Dordrecht, 90: 1-22.
- Kusbach, A., Long, J.N., Van Miegroet, H. and Shultz, L.M., 2012. Fidelity and diagnostic species concepts in vegetation classification in the Rocky Mountains, Northern Utah, USA. Botany, 90 (8): 678-693.
- Lillesand, T.M. and Kiefer, R.W., 1994. Remote sensing and image interpretation. 3rd edition, John Wiley and Sons, New York, 750 p.
- Lillesand, T.M., Kiefer, R.W. and Chipman, J.W., 2004. Remote sensing and image interpretation. 5th edition, John Wiley and Sons, New York.
- Lima, T.A., Beuchle, R., Langner, A., Grecchi, R.C., Griess, V.C. and Achard, F., 2019. Comparing Sentinel 2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon. Remote sensing, 961 (11): 1- 21.
- Ludwig, A., Meyer, H. and Nauss, T., 2016. Automatic classification of Google Earth images for a larger scale monitoring of bush encroachment in South Africa. International Journal of Applied Earth Observation and Geoinformation, 50: 89-94.
- Marangoz, A.M., Sekertekin, A. and Akcin, H., 2017. Analysis of land use land cover classification results derived from Sentinel-2 image. 17th International Multidisciplinary Scientific GeoConference SGEM, Photogrammetry and Remote Sensing, 3-8.
- Maynard, J.J. and Karl, J.W., 2017. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites. PloS ONE 12 (4):e0175201.
- MohammadHassanpour, M., 2013. Preparation of land use map of Ghoshchi Pass area of Urmia using Google Earth images and GIS. Third Conference on Environmental Planning and Management, Tehran,
https://civilica.com/doc/240157. (In Persian).
- Mountrakis, G., Im, J. and Ogole, C., 2011. Support vector machines in remote sensing: A review. Photogrammetry and Remote Sensing, 66: 247–259.
- Mueller-Dombois, D. and Ellenberg, H., 1974. Aims and methods of vegetation ecology. John Wiley and Sons, New York, 2 (2): 158-159.
- Navarro, G., Caballero, I., Silva, G., Parra, P.C., Vázquez, Á. and Caldeira, R., 2017. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. International Journal of Applied Earth Observation and Geoinformation, 58 (2): 97-106.
- Niazi, Y., Ekhtesasi, M., Malekinezhad, H. and Hosseini, S.Z., 2011. Comparison Between two Classification Methods of Maximum likelihood and Artificial Neural Network for Providing Land use Maps Case Study: Ilam Dam Area, Geography and Development, 20: 119-132.
- Ouzemou, J.E., El Harti, A., Lhissou, R., El Moujahid, A., Bouch, N., El Ouazzani, R., Bachaoui, E.M. and El Ghmari, A., 2018. Crop type mapping from pansharpened Landsat 8 NDVI data: A case of a highly fragmented and intensive agricultural system. Remote Sensing Application: Society Environment, 11: 1–28.
- Pourbagherkordi, M., 2018. Comparison of visual and automated methods based on object in identifying landforms in Yazd-Ardakan basin. Remote Sensing and GIS Iran, 1: 73-90. (In Persian).
- Sepehri, A., 2002. Investigating the capability of mineart method in removing the effect of topography in satellite images. Natural Resources of Iran, 55: 107-122. (In Persian).
- Smith, P.C., Dellepiane, S.G. and Schowengerdt, R.A., 2010. Quality Assessment of Image Classification Algorithms for Land Cover Mapping: A review and a proposal for a cost-based approach. International Journal of Remote Sensing, 20 (8): 1461-1486.
- Tahmasebi, P., Moradi, M. and Omidipour, R., 2017. Plant Functional Identity as the Predictor of Carbon Storage in Semi-Arid Ecosystems. Plant Ecology & Diversity, 2-3 (10): 139-151.
- Thenkabail, P.S. and Prasad, S., 2015. Remotely Sensed Data Characterization, Classification and Accuracies. Object-Based Image Analysis: Evolution, History, State of the Art, and Future Vision, 276-293.
- Thenkabail, P.S. and Lyon, J.G., 2016. Hyperspectral remote sensing of vegetation, Second Edition, Four Volume Set: CRC Press. 1632 p.
- Topaloglu, R.H., Sertel, E. and Musaoglu, N., 2016. Assessment of classification accuracies of Sentinel 2 and Landsat-8 data for land cover/use mapping. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XXIII ISPRS Congress, 1055-1059.
- Unger, D.R., Kulhavy, D.L. and Hung, I.K., 2013. Validating the Geometric Accuracy of High Spatial Resolution Multispectral Satellite Data. GIScience and Remote Sensing, 50 (3): 271–280.
- Weng, Q., 2018. Remote Sensing Time Series Image Processing. Taylor & Francis Series in Imaging Science International Standard Book, 13, 264 p.
- Xie, Z., Chen, Y., Lu, D., Li, G. and Chen, E., 2019. Classification of Land Cover, Forest, and Tree Species Classes with ZiYuan-3 Multispectral and Stereo Data. Remote. Sensing, 11 (2): 1-27.
- Xu, M., Watanachaturaporn, P., Varshney, P.K. and Arora, M.K., 2005. Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 97 (3): 322-336.
- Yoneyama, Y., Suzuki, S., Sawa, R., Yoneyama, K., Power, G.G. and Araki, T., 2002. Increased plasma adenosine concentrations and the severity of preeclampsia. Obstetrics & Gynecology, 100 (6): 1266-1270.