Document Type : Research Paper

Authors

1 Assistant Professor, Rangeland Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran

2 Research expert, Rangeland Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran

10.22092/ijrdr.2024.131463

Abstract

Background and Objectives:
Heavy metals are major soil pollutants due to their toxicity and persistence. Mining activities are a significant source of pollution in natural ecosystems. With its numerous mines, the Khaf region is a case in point. Identifying plants capable of absorbing metals from contaminated soils is crucial for phytoremediation efforts. This study investigated the phytoremediation potential of three plant species – Artemisia sieberi, Salsola richteri, and Scariola orientalis – in the iron mine area of Khaf city, Razavi Khorasan province, Iran.
Methodology:
All plant species were first surveyed at distances 500, 1000, and 3000 meters from the mine to determine the dominant vegetation type. Three species belonging to this dominant type were then selected for heavy metal analysis. Plant samples were collected from different parts (leaves, roots) of these dominant species, along with soil samples from around their roots, at varying distances from the mine and in the direction of the prevailing wind. A total of 36 plant and 36 soil samples were analyzed for copper, iron, and lead using inductively coupled plasma (ICP) to determine metal contamination levels. Plant remediation potential was assessed using various phytoremediation indicators.
Results:
Significant differences in phytoremediation indicators were observed among the plant species. Salsola richteri exhibited the highest bioconcentration factors (BCF) for lead (1.38), iron (1.37), and copper (1.99), and the highest bioaccumulation coefficients (BAC) for lead (1.55), iron (1.72), and copper (1.95). This indicates Salsola richteri's strong ability to accumulate these metals.
The highest lead soil pollution index (2.64) was found around Artemisia sieberi, signifying moderate lead pollution exceeding natural levels in this plant's habitat. The highest iron contamination was observed in the soil around Artemisia sieberi and Scariola orientalis.
Conclusion:
Metal concentrations in shoots, roots, and soil were highest at 500 meters from the mine and decreased with increasing distance. Soil analysis revealed higher average concentrations of the studied elements compared to global soil values. Notably, high concentrations of copper (490 mg/kg), lead (343 mg/kg), and iron (49000 mg/kg) were observed.
At 500 meters from the mine, Salsola richteri displayed BCF values of 1.4, 1.5, 1.45, and 1.02 for lead, iron, copper, and BAC values of 1.7, 1.8, 1.4, and 1.34, respectively. Based on these results, Salsola richteri shows promise as a suitable plant for decontaminating soils in the Khaf mine area.
 

Keywords

Abbaszadeh-Dahaji, P., Baniasad-Asgari, A. and Hamidpour, M. 2019. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Journal of Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-019-06334-
Ahmadi, B., 2012. The role of heavy metals in human health. July 20 2012. Available at: Resources heavy metals
Ali, H., khan, E. and Sajad, M. A., 2013. Phyto extraction of heavy metals – Concepts and applications. Chemosphere, 91: 869 – 881.
Barbosa, B., Boléo S, Sidella, S., Costa, J., Duarte, M.P., Mendes, B., Cosentino, S.L., and Fernando, A.L. 2015. Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L. BioEnergy Research, 8: 1500-1511.
Behrouz, E.M. Abdolkarim, C., Nafiseh, Y. & Bahareh, L., 2008. Identification of the hyper accumulator plants in copper and iron mine in Iran. Pakistan journal of biological science, 11(3): 490 -492.
Boonyapookana, B., Upatham, E.S., Kruatrachne, M., Pokethitiyook, P. and Singhakaew, S., 2002. Phytoaccumulation and phytotoxicity of cadmium and chromium in Duckweed Wolffia globose. International Journal of Phytoremediation, 4:87-100.
Chojnacka, K., Chojnacki, A., Gorecka, H. and Górecki, H., 2005. Bioavailability of heavy metals from polluted soils to plants. Science of the total Environment, 337(1-3): 175-182.
Farahmandkia, Z., Mehrasbi, M.R., Sekhawatju, M.S., Hasanalizadeh, A.S.H., and Ramezanzadeh, Z. 2009. Study of heavy metals in the atmospheric deposition in Zanjan, Iran. Iran. Journal of Health Environmental, 2(4), 240-249.
Favas, P.J.C. and Pratas, J., 2013. Uptake of uranium by native aquatic plants: potential for bio indication and Phytoremediation. Published by EDP Sciences, E3S Web of conferences in Portugal 1, 13007: 674-677.
Hafizi Moghadis, N. and Bagherzadeh, A., 2013, "Studies on the environmental effects of harvesting from iron ore mines of Khaf", General Department of Environmental Protection, Khorasan Razavi
Hamidian. A.H., Norouznia, H., Mirzaie, R., 2015. Phytoremediation efficiency of Nelumbo nucifera in removing heavy metals (Cu, Cr, Pb, As and Cd) from water of Anzali wetland. Journal of Natural Enviroment. 96 (2): 633-643.
Hashemi, H. 2020. Using the potential of forage production and plant remediation of vetiver in saline agroecosystems The Second International Conference on Haloculture (ICH) will be held at Yazd, Iran during February 19-20, Yazd, Iran.
Jahantab, E. and Najmeddin, A., 2021. Investigation of Heavy Metal Contamination and Enrichment (Case Study: Shiraz Industrial Town and surrounding Lands). Journal of Range and Watershed Managment, 2021; 74(1): 37-51. doi: 10.22059/jrwm.2021.314260.1549
Jarup, l., 2003. Hazards of heavy metal contamination, British Medical Bulletin, 68(1): 167–182.
Khan, S., Aijun, L., Zhang, S., Hu, Q. and Zhu, Y. G., 2008. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. Journal of Hazardous Materials, 152(2): 506-515.
Khoramnejadian, S.H., Matinfar, F. and Khoramnejadian. S.H., 2013. Phytoremediation of petroleum hydrocarbons by native plants of Damavand region. Global Journal of Medicinal Plant Research, 1(1): 8-11.
Lorestani, B., Cheraghi, M. and Yousefi. N., 2011. Phytoremediation Potential of Native Plants Growing on a Heavy Metals Contaminated Soil of Copper mine in Iran. World Academy Science, Engineering Technology, 53: 377 -382.
Moameri, M. and Dadjoo, F., 2019. Assessing Capability of Artemisia aucheri Boiss for Phytoremediation of Soils Contaminated with Heavy Metals. Journal of Rangeland Science, 9( 4): 414-425.
Moameri, M., Jafri, M. O. H. A. M. M. A. D., Tavili, A., Motasharezadeh, B. and Zare Chahouki, M., 2017. Rangeland plants potential for phytoremediation of contaminated soils with Lead, Zinc, Cadmium and Nickel (Case Study: rangelands around national lead & zinc factory, Zanjan, Iran). Journal of Rangeland Science, 7(2):160-171.
 Moameri, M., Jafri, M., Tavili, A., Motasharezadeh, D. and Zare Chahouki, M.A., 2017. Rangeland Plants Potential for Phytoremediation of Contaminated Soils with Lead, Zinc, Cadmium and Nickel (Case Study: Rangelands around National Lead & Zinc Factory, Zanjan, Iran), Journal of Rangeland Science, 7(2): 160-171.
Moameri, M., Jafary, M., Tavili, A. and Motesharezadeh, B., 2016. 2nd Coference on Conservation Natural Resources and Environment. Investigating the phytoremediation ability of some pasture plants (case study: pastures around Zanjan lead and zinc company), Ardabil.p:1-5.
Mortazavi, S.J., Dabiri, R. and Valipour, M. A., 2018. Investigating the environmental effects of Neishabur camel iron ore mining, northeast of Iran. National Conference on Knowledge Based Research in Earth Sciences, Chamran University.
Norouzihajiabdal, f., Farzamisepehr, M. and Farajzadeh, M.A., 2013. Phytoremediation potential of polypogon monspeliensis L. in remediation of petroleum polluted soils. Journal of Plant Environmental Physiology, 8(1): 75-87.
Saadati, A., 2016. Investigating the environmental effects of the extraction of placer iron ore mines in Sangan Khaf region on water and soil resources. Masters thesis, Department of Sciense, The Ferdowsi University of Mashhad, Mashhad.
Saba, G., A.H. Parizanganeh, A. Zamani & J. Saba, 2015. PhytoremeDiation of Heavy Metals Contaminated Environments: Screening for Native Accumulator Plants in Zanjan-Iran. International Journal of Environmental Researched, 9(1):309-316.
Shahriyar, K., Forohar, F. and Sharif, N., 2003.  Environmental pollution caused by mining operations in Saidi limestone mines. 5th Congress on Safety, Health and Environment in Mines and Related Industries, Kerman.
Siyar, R., Doulati Ardejani, F., Farahbakhsh, M., Norouzi, P., Yavarzadeh, M. and Maghsoudy, S. 2020. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Journal of Chemosphere, 246: 125802.
Tavili, A., Jahantab, E., Jafari, M., Motashre zadeh, B. and Zargham, N.A., 2018. Remediation of contaminated soils with heavy metal of Pb using rangelands plants in the greenhouse condition Plant Research Journal (Iranian Biology Journal,31(3):663-675.
Van Epps, A., 2006. Phytoremediation of petroleum Hydrocarbons, U.S. Environmental Protection Agency, Washington, DC, 171p.
Wu, D., Yu, X., Lai, M., Feng, J., Dong, X., Peng, W., Su, S., Zhang, X., Wan, L., Jacobs, D.F. and Zeng, S., 2021. Diversified effects of co-planting landscape plants on heavy metals pollution remediation in urban soil amended with sewage sludge. Journal of Hazardous Materials, 403:123855.
Zhuang, P., Yang, Q., Wang, H. and Shu, W., 2007. Phyto extraction of heavy metals by eight plant species in the field. Water. Air, and soil pollution, 184: 235- 242.
Zu, YQ., Li, Y., Chen, JJ., Chen, HY., Qin, L. and Schvartz, C. 2005. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead -zinc mining area in Yunnan. China Environment International, 31: 755 -762.