Document Type : Research Paper

Authors

1 Rangeland Management Department, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran

2 Department of Phytomedical Engineering, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah, Iran

10.22092/ijrdr.2025.134290

Abstract

Abstract
Background and Objectives        
Interactions between arbuscular mycorrhizal fungi (AMF) and plants are critical for ecosystem function; however, these interactions remain poorly characterized in mountainous and cold environments. This research aimed to investigate the effect of three shrub species (Berberis integerrima, Onobrychis cornuta, and Juniperus sabina.) on root colonization, spore population, and fungal species diversity in the rhizosphere of these plants.
Materials and Methods  
This research was conducted in the Belde highlands, Helooposhteh village, in the southern part of Nur County, Mazandaran Province, Iran. A field survey was initially performed to select 13 plots as replicates. Each plot contained three adjacent shrub species. Soil sampling was carried out in the spring of 2023. A total of 52 rhizosphere soil samples (4 samples under each shrub and 1 sample from outside the shrub canopy in each plot) and 39 root samples were collected. Soil samples were taken from a depth of 0-30 cm in each of the 13 plots. Root samples were stained using the Hayman & Phillips (1970) method to visualize fungal structures (vesicles, arbuscules, and hyphae). Also, 200 grams of each soil sample were taken, and spores were isolated and counted using a washing, wet sieving, and centrifugation method in a sucrose solution. Then, identification was performed.
Results
The results indicated that the diversity of arbuscular mycorrhizal fungi (AMF) was significantly influenced by the canopy of different shrub species. In the control (areas outside the shrub canopies), Diversispora aurantia was identified. Under the canopy of Onobrychis cornuta, Glomus flavisporum and Acaulospora sp. were found. Additionally, under the Berberis integerrima canopy, Gigaspora gigantea, Acaulospora colombiana, and Acaulospora jejuensis were identified, and under the Juniperus sabina canopy, Cetraspora pellucida and Glomus flavisporum were observed. The results also showed that Acaulospora had the highest abundance among these fungi, while Gigaspora and Diversispora aurantia had the lowest. Furthermore, root colonization rate and spore counts showed significant differences among the shrub species. The root colonization percentage for O. cornuta was 79.46% with a spore count of 4038 per 200g of soil The relative abundance of J. sabina was 53.46% (3952 spores), while B. integerrima constituted 41.30% (3593 spores) of the total spore count.
Conclusion
The results of this study emphasize the significance of species diversity in shrub communities within mountainous and cold habitats, highlighting their pivotal role in shaping fungal communities and enhancing ecosystem functions. Shrubs are recognized as key drivers in ecological interactions and in maintaining the sustainability of ecosystem processes.
 

Keywords

Reference
Ahmadi, J., Farzam, M. & Lakzian, A., 2016. Investigation of the effect of plant growth forms in semi-steppe rangelands on the level of symbiosis with mycorrhizal fungi. The 3rd Scientific Research Congress on the Development and Promotion of Agricultural Sciences, Natural Resources, and the Environment of Iran.
Aladdin Vandi, A., 2021 Factors affecting rangeland degradation and identification of conservation strategies. Spatial Research Studies, 4(90): 71–90.
Alguacil, M. M., Roldán, A. & Torres, M. P., 2009Complexity of        semiarid gypsophilous shrub communities mediates the AMF biodiversity at the plant species level. Microbial Ecology, 57, 718-727.‌ https://doi.org/10.1007/s00248-008-9438-z
Al-Maliki, S. & Al-Masoudi, M., 2018. Interactions between Mycorrhizal fungi, tea wastes, and algal biomass affecting the microbial community, soil structure, and alleviating of salinity stress in corn yield (Zea mays L.). Plants, 7(3): 63.‌  https://doi.org/10.3390/plants7030063
Arayne, M. S., Sultana, N. & Bahadur, S. S., 2007. The berberis story: Berberis vulgaris in therapeutics. Pakistan journal of pharmaceutical sciences, 20(1): 83-92.‌
Asili, J., Emami, S. A., Rahimizadeh, M., Fazly-Bazzaz, B. S. & Hassanzadeh, M. K., 2010. Chemical and antimicrobial studies of Juniperus sabina L. and Juniperus foetidissima Willd. essential oils. Journal of Essential Oil-Bearing Plants, 13(1), 25-36.‌ https://doi.org/10.1080/0972060X.2010.10643787
Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N., 2019. Global imprint of mycorrhizal fungi on whole-plantnutrient economics. Proceedings of the National Academy of Sciences, 116(46): 23163-23168.‌ https://doi.org/10.1073/pnas.1906655116
Becchetti, T., George, M., McDougald, N., Dudley, D., Connor, M., Flavel, D. & Markegard, G., 2016. Rangeland Management Series: Annual Range Forage Production. https://doi.org/10.3733/ucanr.8018.
Casanova-Katny, M. A., Torres-Mellado, G. A., Palfner, G. & Cavieres, L. A., 2011. The best for the guest: high Andean nurse cushions of Azorella madreporica enhance arbuscular mycorrhizal status in associated plant species. Mycorrhiza, 21, 613-622.‌ https://doi.org/10.1007/s00572-011-0367-1.
Elfstrand, M., Feddermann, N., Ineichen, K., Nagaraj, V. J., Wiemken, A., Boller, T. & Salzer, P., 2005. Ectopic expression of the mycorrhiza‐specific chitinase gene Mtchit 3‐3 in Medicago truncatula root‐organ cultures stimulates spore germination of glomalean fungi. New phytologist, 167(2): 557-570. https://doi.org/10.1111/j.1469-8137.2005.01397.x.
Eom, A. H., Hartnett, D. C. & Wilson, G. W., 2000. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia, 122, 435-444.
‌Erfanzadeh, R., Shayesteh Palaye, A. A. & Ghelichnia, H., 2020. Shrub effects on germinable soil seed bank in overgrazed rangelands. Plant Ecology & Diversity, 13(2): 199-208. https://doi.org/10.1080/17550874.2020.1718233
Ficano, N., Porder, S. & McCulloch, L. A., 2021. Tripartite legume–rhizobia–mycorrhizae relationship is influenced by light and soil nitrogen in Neotropical canopy gaps. Ecology, 102(11), e03489.  
Garbole, J. & Teklu, B., 2024. Woody species’ carbon sequestration and soil seed bank conservation potentials of traditional rangeland management strategies in Western Guji, Southern Ethiopia. Environmental and Sustainability Indicators, 23, 100459.‌ https://doi.org/10.1016/j.indic.2024.100459.
Gerdemann, J. W. & Nicolson, T. H., 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving & decanting.‌ https://doi.org/10.1016/S0007-1536(63)80079-0.
Gholamalizadeh Ahangar, A., Kermani Zadeh, B., Sabbagh, S. & Sirous Mehr, A., 2014. Effect of arbuscular mycorrhizal fungi and organic fertilizers on the yield and yield components of two wheat cultivars. Water and Soil4, 795-803.
Ghorbani Sini, Z., Talebi, M., Bahar, M. & Zakieh Ghorbani Sini., 2011. Identification of rhizobial isolates containing specific genes effective in competition and symbiotic efficiency with legumes using specific primers. The 7th Biotechnology Congress of the Islamic Republic of Iran
Guisande-Collazo, A., González, L. & Souza-Alonso, P., 2016. Impact of an invasive nitrogen-fixing tree on arbuscular mycorrhizal fungi and the development of native species. AoB Plants, 8, plw018. https://doi.org/10.1093/aobpla/plw018.
Hatami, N., Bazgiri, A., Sedaghaty, A. & Darvishnia, M., 2019. Morphological and phylogenetic study of arbuscular mycorrhizal fungi symbiotic with the roots of some medicinal plants. Journal of Agricultural Biotechnology, 12(1). https://doi.org/10.22108/BJM.2020.120148.1242.
Jenkins, W. R. B., 1964. A rapid centrifugal-flotation technique for separating nematodes from soil.‌
Johnson, J. M., Houngnandan, P., Kane, A., Chatagnier, O., Sanon, K. B., Neyra, M. & van Tuinen, D., 2016. Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin (West Africa): an exploratory study. Annals of Microbiology, 66, 207-221.‌ https://doi.org/10.1007/s13213-015-1097-y.
Khaleghi, P., 1998. Characteristics of Hyrcanian forests. Research Institute of Forests and Rangelands, Tehran.
Lee, D.H., Jeong, H.S., Lee, J.H., Kim, T.E., Lee, J., Kim, I.S., 2008. Real-time PCR for quantitative detection of bovine herpesvirus type 1. Korean Journal of Microbiology, 44(1), 14–21.
Lee, J., Park, S. H. & Eom, A. H., 2006. Molecular identification of arbuscular mycorrhizal fungal spores collected in Korea. Mycobiology, 34(1), 7-13.‌ https://doi.org/10.4489/MYCO.2006.34.1.007
Mahdhi, M., Tounekti, T., Al‐Turki, T. A. & Khemira, H., 2017. Composition of the root mycorrhizal community associated with Coffea arabica in Fifa Mountains (Jazan region, Saudi Arabia). Journal of Basic Microbiology, 57(8): 691-698.  https://doi.org/10.1002/jobm.201700075
Majd, A., Mehrabian, S., Mostafai, H. & Rahmani, H., 2008. Antioxidant and anticancer effect of aqueous extract of Berberis integerrima. Journal of Biological Sciences, 1, 31-38.‌
Martínez-García, L. B. & Pugnaire, F. I., 2011. Arbuscular mycorrhizal fungi host preference and site effects in two plant species in a semiarid environment. Applied Soil Ecology, 48(3), 313-317. https://doi.org/10.1016/j.apsoil.2011.04.003.
Martínez-García, L. B., Armas, C., de Dios Miranda, J., Padilla, F. M. & Pugnaire, F. I., 2011. Shrubs influence arbuscular mycorrhizal fungi communities in a semi-arid environment. Soil Biology and Biochemistry, 43(3): 682-689. https://doi.org/10.1016/j.soilbio.2010.12.006
Menge, J. A., Steirle, D., Bagyaraj, D. J., Johnson, E. L. V., & Leonard, R. T., 1978. Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytologist, 80(3): 575-578.‌https://doi.org/10.1111/j.1469-8137.1978.tb01589.x.
Mosbah, M., Philippe, D. L. & Mohamed, M., 2018. Molecular identification of arbuscular mycorrhizal fungal spores associated to the rhizosphere of Retama raetam in Tunisia. Soil Science and Plant Nutrition, 64(3): 335-341.‌ https://doi.org/10.1080/00380768.2018.1431012.
Ogoma, B. O., Omondi, S. F., Ngaira, J. & Kimani, J. W., 2021. Molecular diversity of arbuscular mycorrhizal fungi (AMF) associated with Carissa edulis, an Endangered Plant Species along Lake Victoria Basin of Kenya. International Journal of Forestry Research, 2021(1): 7792282.‌  https://doi.org/10.1155/2021/7792282.
Öpik, M., Metsis, M., Daniell, T. J., Zobel, M. & Moora, M. J. N. P., 2009. Large‐scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 184(2): 424-437.‌  https://doi.org/10.1111/j.1469-8137.2009.02920.x.
Pan, L., Zhou, T., Chen, C., Xu, H. & Wang, W., 2024. Phytochemistry, Pharmacology, and Traditional Medicine Applications of Juniperus sabina L.: A Comprehensive Overview. Molecules, 29(24): 5876. https://doi.org/10.3390/molecules29245876
Phillips, J. M. & Hayman, D. S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1): 158-IN18.‌
Pouryousef, H., Hemmat, J. & Vaezi, M., 2017. Comparison of molecular and morphological methods in studying the symbiosis of arbuscular mycorrhizal fungi in saffron (Crocus sativus L.). Scientific-Research Quarterly of Microorganism Biology, 7(26): 1–10. https://doi.org/10.22108/bjm.2017.105754.1074.
Rini, M.V., Yelli, F., Tambunan, D.L. and Damayanti, I., 2021. Morphological and molecular identifications of three native arbuscular mycorrhizal fungi isolated from the rhizosphere of Elaeis guineensis and Jatropha curcas in Indonesia. Biodiversitas Journal of Biological Diversity, 22(11). https://doi.org/10.13057/biodiv/d221128.
Rodriguez, A., Clapp, J. P., Robinson, L. & Dodd, J. C., 2005. Studies on the diversity of the distinct phylogenetic lineage encompassing Glomus claroideum and Glomus etunicatum. Mycorrhiza, 15, 33-46. https://doi.org/10.1007/s00572-003-0291-0
Ross, J. P., 1980. Effect of nontreated field soil on sporulation of vesicular-arbuscular mycorrhizal fungi associated with soybean. Phytopathology, 70(12): 1200-1205.‌
Saia, S. & Jansa, J., 2022. Arbuscular mycorrhizal fungi: the bridge between plants, soils, and humans. Frontiers in Plant Science, 13, 875958. https://doi.org/10.3389/fpls.2022.875958
Shayesteh Palay, A. A., Erfanzadeh, R. & Gholichnia, H., 2017. The effect of Berberis integerrima shrub canopy on the diversity and density of the soil seed bank. The First National Conference on Conservation and Protection of Arasbaran Forests.
Sizonenko, T. A., Dubrovskiy, Y. A. & Novakovskiy, A. B., 2020. Changes in mycorrhizal status and type in plant communities along altitudinal and ecological gradients—a case study from the Northern Urals (Russia). Mycorrhiza, 30(4): 445-454.‌ https://doi.org/10.1007/s00572-020-00961-z.
Smith, S. E. & Read, D. J., 2010. Mycorrhizal symbiosis. Academic Press.‌
Smith, S. E., Christophersen, H. M., Pope, S., & Smith, F. A., 2010. Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant and Soil, 327, 1-21.‌ https://doi.org/10.1007/s11104-009-0089-8.
Tamartash, R., Yousefian, M., Tatian, M. R., & Ehsani, M., 2010. Vegetation analysis in rangelands of Lasem, Iran. Agriculture and Environment Science, 7, 397-401.‌
Torrecillas, E., Alguacil, M. M., & Roldán, A., 2012. Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Applied and Environmental Microbiology, 78(17): 6180-6186.‌ https://doi.org/10.1128/AEM.01287-12.
van de Voorde, T. F., van der Putten, W. H., Gamper, H. A., Hol, W. G., & Bezemer, T. M., 2010. Comparing arbuscular mycorrhizal communities of individual plants in a grassland biodiversity experiment. New Phytologist, 746-754.‌  https://doi.org/10.1111/j.1469-8137.2010. 03216.x
van Der Heijden, M. G., Martin, F. M., Selosse, M. A., & Sanders, I. R., 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205(4), 1406-1423.‌  
Velázquez, M. S., Cabello, M. N., & Barrera, M., 2013. Composition and structure of arbuscular-mycorrhizal communities in El Palmar National Park, Argentina. Mycologia, 105(3): 509-520. https://doi.org/10.3852/11-353.
Wang, M. & Jiang, P., 2015. Colonization and diversity of AM fungi by morphological analysis on medicinal plants in southeast China. The Scientific World Journal, 2015(1): 753842.‌ https://doi.org/10.1155/2015/753842.
Wei, Y., Chen, Z., Wu, F., Hou, H., Li, J., Shangguan, Y. & Zeng, Q., 2015. Molecular diversity of arbuscular mycorrhizal fungi at a large-scale antimony mining area in southern China. Journal of Environmental Sciences, 29, 18-26. https://doi.org/10.1016/j.jes.2014.10.002.
Wilkes, T. I., 2021. Arbuscular mycorrhizal fungi in agriculture. Encyclopedia1(4): 1132-1154.‌ https://doi.org/10.3390/encyclopedia1040085
Zhou, J., Sun, T., Shi, L., Kurganova, I., de Gerenyu, V. L., Kalinina, O. & Kuzyakov, Y., 2023. Organic carbon accumulation and microbial activities in arable soils after abandonment: A chronosequence study. Geoderma, 435, 116496. https://doi.org/10.1016/j.geoderma.2023.116496