نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشآموخته کارشناسیارشد مدیریت و کنترل بیابان، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران
2 دانشیار، گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران
3 استادیار، گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران
4 دانشآموخته دکتری بیابانزدایی، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران
چکیده
سابقه و هدف
پوشش گیاهی و زیتوده روزمینی از اجزای کلیدی اکوسیستمهای خشک و نیمهخشک محسوب میشوند و نقش مهمی در پایداری محیط، ترسیب کربن، حفظ تنوع زیستی و تأمین چراگاه برای دامهای اهلی و وحشی دارند. این مناطق به دلیل حساسیت بالا به تغییرات محیطی، نیازمند پایش دقیق و مداوم هستند. در دهههای اخیر، استفاده از شاخصهای پوشش گیاهی مبتنی بر دادههای سنجش از دور برای مدلسازی پوشش و زیتوده گیاهی بهعنوان روشی مؤثر در مدیریت منابع طبیعی مطرح شده است. با این حال، در مناطق خشک و نیمهخشک کمتر به بررسی و ارزیابی دقیق این شاخصها پرداخته شده است. هدف این تحقیق، ارزیابی کارایی تصاویر ماهوارهای لندست 8 و سنتینل 2 و شاخصهای مختلف پوشش گیاهی در مدلسازی پوشش و زیتوده گیاهی مراتع خشک غرب ایران با استفاده از روش رگرسیون خطی بود.
مواد و روشها
این تحقیق در مراتع خشک استان ایلام انجام شد. دادههای میدانی شامل اندازهگیری پوشش گیاهی و زیتوده روزمینی در 50 پلات 30×30 متری بهصورت تصادفی سیستماتیک جمعآوری شد. نمونهبرداری در فصل اوج رشد گیاهان و قبل از چرای دام انجام گردید. در هر پلات، درصد پوشش گیاهی زنده، لاشبرگ، خاک لخت و سنگریزه ثبت شد و زیتوده روزمینی با قطع پوشش گیاهی از سطح خاک و توزین نمونههای خشکشده اندازهگیری گردید.
تصاویر ماهوارهای لندست 8 و سنتینل 2 برای دوره زمانی مشابه با نمونهبرداری میدانی تهیه شدند. شاخصهای پوشش گیاهی شیبمحور مانند NDVI و EVI و شاخصهای فاصلهمحور مانند MSAVI و SAVI با استفاده از نرمافزارهای ENVI و ArcGIS استخراج گردیدند. برای مدلسازی پوشش گیاهی و زیتوده، از روش رگرسیون خطی استفاده شد. شاخصهای منتخب با مقایسه آمارههای ضریب تبیین (R²) و ریشه میانگین مربعات خطا (RMSE) ارزیابی شدند.
نتایج
نتایج نشان داد که شاخصهای فاصلهمحور مانند MSAVI نسبت به شاخصهای شیبمحور در مدلسازی پوشش و زیتوده گیاهی عملکرد بهتری داشتند. شاخص MSAVI، مستخرج از تصاویر لندست، با R² برابر با 19/0 برای پوشش گیاهی و 21/0 برای زیتوده، بالاترین دقت را ارائه کرد. مدلسازی پوشش گیاهی با روش رگرسیون خطی نشان داد که درصد پوشش گیاهی در منطقه بین 5 تا 81 درصد متغیر است. همچنین، برآورد زیتوده روزمینی در منطقه با استفاده از این روش در محدوده 8/6 تا 4/58 گرم در متر مربع قرار داشت. براساس نتایج، هنگام استفاده از شاخصهای شیبمحور مانند NDVI، دقت مدلسازی پوشش گیاهی با تصاویر سنتینل بیشتر از تصاویر لندست بود. اما در شرایط استفاده از شاخصهای فاصلهمحور، تصاویر لندست دقت بهمراتب بالاتری ارائه کردند، در حالی که دقت تصاویر سنتینل در این حالت نسبت به شاخصهای شیبمحور کاهش یافت.
نتیجهگیری
نتایج این مطالعه نشان داد که عملکرد مدلسازی پوشش گیاهی وابسته به نوع شاخصهای مورد استفاده و تفکیک مکانی دادههای ماهوارهای است. در شاخصهای شیبمحور مانند NDVI، تصاویر سنتینل دقت بیشتری نسبت به تصاویر لندست در برآورد پوشش گیاهی داشتند. در مقابل، در شاخصهای فاصلهمحور، تصاویر لندست دقت بالاتری ارائه کردند، در حالی که دقت تصاویر سنتینل در این شرایط کاهش یافت. این یافتهها نشان میدهد که انتخاب مناسب شاخصهای طیفی متناسب با شرایط منطقهای میتواند تأثیر قابلتوجهی بر دقت مدلسازی داشته باشد. علاوه بر این، نتایج تأکید میکند که در مناطق خشک، شاخصهای فاصلهمحور ممکن است عملکرد بهتری داشته باشند، زیرا اثرهای بازتاب خاک لخت را کاهش میدهند و اطلاعات دقیقتری در مورد پوشش گیاهی فراهم میکنند. این نتایج میتواند مبنایی برای بهینهسازی روشهای سنجش از دور در مطالعات آینده باشد.
کلیدواژهها
عنوان مقاله [English]
Estimation of Vegetation Cover and Aboveground Biomass Using Satellite Images in the Arid Rangelands of Western Iran
نویسندگان [English]
- Masoud Safari 1
- Marzban Faramarzi 2
- REza Omidpour 3
- Hassan Fathizad 4
1 MSc in Desert Management and Control, Department of Rangeland and Watershed Management, Faculty of Agriculture, Ilam University, Ilam, Iran
2 Associate Professor, Department of Rangeland and Watershed Management, Faculty of Agriculture, Ilam University, Ilam, Iran
3 Assistant Professor, Department of Rangeland and Watershed Management, Faculty of Agriculture, Ilam University, Ilam, Iran
4 PhD in Combating Desertification, Department of Management Arid and Desert Regions, College of Natural Resources and Desert, Yazd University, Iran
چکیده [English]
Background and Objective
Vegetation cover and aboveground biomass are critical components of arid and semi-arid ecosystems, playing a vital role in environmental sustainability, carbon sequestration, biodiversity conservation, and providing forage for both domestic and wild herbivores. Due to their high sensitivity to environmental changes, these regions require accurate and continuous monitoring. In recent decades, the use of vegetation indices derived from remote sensing data has emerged as a promising approach for modeling vegetation cover and biomass in natural resource management. However, these indices have been less thoroughly evaluated in arid and semi-arid areas. This study aims to assess the efficiency of Landsat 8 and Sentinel-2 satellite imagery and various vegetation indices in modeling vegetation cover and aboveground biomass in the arid rangelands of western Iran, using linear regression methods.
Materials and Methods
This study was conducted in the arid rangelands of Ilam Province, western Iran. Field data were collected using a random-systematic sampling method across 50 plots (30 × 30 meters) during the peak growing season and prior to livestock grazing. In each plot, the percentage of live vegetation cover, litter, bare soil, and gravel was recorded. Aboveground biomass was measured by clipping vegetation at ground level and weighing the oven-dried samples. Satellite images from Landsat 8 and Sentinel-2, corresponding to the same period as the field sampling, were acquired. Both slope-based vegetation indices, such as NDVI and EVI, and distance-based indices, such as MSAVI and SAVI, were extracted using ENVI and ArcGIS software. Linear regression analysis was employed to model vegetation cover and aboveground biomass. The performance of the selected indices was evaluated using the coefficient of determination (R²) and root mean square error (RMSE).
Results
The results indicated that distance-based vegetation indices, such as MSAVI, outperformed slope-based indices in modeling vegetation cover and aboveground biomass. The MSAVI index derived from Landsat imagery provided the highest accuracy, with an R² of 0.19 for vegetation cover and 0.21 for biomass. Linear regression modeling showed that vegetation cover in the study area ranged from 5% to 81%. Additionally, the estimated aboveground biomass ranged from 6.8 to 58.4 grams per square meter (gm²). According to the results, when using slope-based indices such as NDVI, Sentinel-2 imagery yielded more accurate vegetation cover modeling compared to Landsat imagery. However, when distance-based indices were applied, Landsat imagery delivered significantly higher accuracy, while the accuracy of Sentinel-2 images decreased relative to their performance with slope-based indices.
Conclusion
The results of this study indicated that the accuracy of vegetation cover modeling is influenced by both the types of indices used and the spatial resolution of satellite data. For slope-based indices like the Normalized Difference Vegetation Index (NDVI), Sentinel imagery demonstrated higher accuracy than Landsat for estimating vegetation cover. Conversely, for distance-based indices, Landsat imagery provided better accuracy, while the precision of Sentinel imagery decreased under these conditions. These findings emphasize the importance of selecting appropriate spectral indices tailored to specific regional characteristics, as this choice can significantly impact modeling accuracy. Furthermore, the results highlight that in arid regions, distance-based indices may be more effective, as they mitigate the impact of bare soil reflectance and provide more reliable information about vegetation cover. This research offers a foundation for optimizing remote sensing methodologies in future studies.
کلیدواژهها [English]
- linear regression
- Sentinel
- vegetation Index
- Landsat
- modelling
- Ali, A., Martelli, R., Lupia, F. and Barbanti, L., 2019.Assessing multiple years’ spatial variability of crop yields using satellite vegetation indices. Remote Sensing, 11(20): 2384. DOI: 3390/rs11202384
- Anderson, D. and Burnham, K., 2004.Model selection and multi-model inference (2nd ed.). Springer-Verlag. DOI: 1007/b97636
- Avazpour, N., Faramarzi, M., Omidipour, R. and Mehdizadeh, H., 2021.Monitoring the drought effects on vegetation changes using satellite imagery (Case Study: Ilam Catchment). Geography and Environmental Sustainability, 11(4): 125-143. (In Persian). DOI: 22126/ges.2022.7130.2472
- De Martonne, E., 1926.L'indice d'aridité. Bulletin de l'Association de Géographes Français, 3(9): 3–5. DOI: 3406/bagf.1926.6322
- Du, M., Li, M., Noguchi, N., Ji, J. and Ye, M., 2023.Retrieval of fractional vegetation cover from remote sensing image of unmanned aerial vehicle based on mixed pixel decomposition method. Drones, 7(1): 43. DOI: 3390/drones7010043
- Faramarzi, M., Kesting, S., Isselstein, J. and Wrage, N., 2010.Rangeland condition in relation to environmental variables, grazing intensity and livestock owners’ perceptions in semi-arid rangeland in western Iran. The Rangeland Journal, 32(4): 367-377. DOI: 1071/RJ09022
- Gao, L., Wang, X., Johnson, B. A., Tian, Q., Wang, Y., Verrelst, J. and Gu, X., 2020.Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 159: 364-377. DOI: 1016/j.isprsjprs.2019.11.018
- Grace, J.B. and Bollen, K.A., 2005.Interpreting the results from multiple regression and structural equation models. Bulletin of the Ecological Society of America, 86(4): 283-295. DOI: 1890/0012-9623(2005)86[283:ITRFMR]2.0.CO;2
- Helldén, U. and Tottrup, C., 2008.Regional desertification: A global synthesis. Global and Planetary Change, 64(3-4): 169-176. DOI: 1016/j.gloplacha.2008.10.006
- Huete, A. R., 1988.A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295-309. DOI: 1016/0034-4257(88)90106-X
- Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X. and Ferreira, L. G., 2002.Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2): 195-213. DOI: 1016/S0034-4257(02)00096-2
- Imani, J., Ebrahimi, A., Gholonejad, B. and Tahmasebi, P., 2018. Comparison of NDVI and SAVI in three plant communities with different sampling intensity (Case Study: Choghakhour Lake Rangelands in Charmahal & Bakhtiri). Iranian Journal of Range and Desert Research, 25(1): 152-169. DOI: 10.22092/ijrdr.2018.116233
- Jiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G. and Zhang, X., 2006.Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 101(3): 366-378. DOI: 1016/j.rse.2006.01.003
- Kabolizadeh, M., Rangzan, K. and Mohammadi, SH., 2018.Application of fusion in satellite images the Landsat-8 and Sentinel-2 in environmental monitoring. Journal of RS and GIS for Natural Resources, 9(3(32)): 53-71. (In Persian). SID. https://sid.ir/paper/189501/en
- Kigel, J., Konsens, I., Segev, U. and Sternberg, M., 2021.Temporal stability of biomass in annual plant communities is driven by species diversity and asynchrony, but not dominance. Journal of Vegetation Science, 32(2): 13012. DOI: 1111/jvs.13012
- Li, Y., Li, M., Li, C. and Liu, Z., 2020.Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Scientific Reports, 10(1): 9952. DOI: 10.1038/s41598-020-67024-3
- Liu, B., Zhao, W., Liu, Z., Yang, Y., Luo, W., Zhou, H. and Zhang, Y., 2015.Changes in species diversity, aboveground biomass, and vegetation cover along an afforestation successional gradient in a semiarid desert steppe of China. Ecological Engineering, 81: 301-311. DOI: 10.1016/j.ecoleng.2015.04.014
- Lu, Q., Zhao, D., Wu, S., Dai, E. and Gao, J., 2019.Using the NDVI to analyze trends and stability of grassland vegetation cover in Inner Mongolia. Theoretical and Applied Climatology, 135: 1629-1640. DOI: 10.1007/s00704-018-2614-2
- Luz, L. R., Giongo, V., Santos, A. M. D., Lopes, R. J. D. C. and Júnior, C. D. L., 2021.Biomass and vegetation index by remote sensing in different caatinga forest areas. Ciência Rural, 52: e20201104. DOI: 1590/0103-8478cr20201104
- Mashala, M. J., Dube, T., Mudereri, B. T., Ayisi, K. K. and Ramudzuli, M. R., 2023.A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sensing, 15(16): 3926. DOI: 3390/rs15163926
- Mu, X., Song, W., Gao, Z., McVicar, T. R., Donohue, R. J. and Yan, G., 2018.Fractional vegetation cover estimation by using multi-angle vegetation index. Remote Sensing of Environment, 216: 44-56. DOI:1016/J.RSE.2018.06.022
- Omidipour, R., Ebrahimi, A., Tahmasebi, P. and Faramarzi, M., 2020. Grazing effects on the relationship between vegetation canopy cover and above-ground phytomass with vegetation indices in Sabzekouh region, Chaharmhal va Bakhtiari. Journal of Range and Watershed Managment, 73(1): 33-47. DOI: 10.22059/jrwm.2020.272219.1336
- Omidipour, R., Tahmasebi, P., Faizabadi, M. F., Faramarzi, M. and Ebrahimi, A. (2021).Does β diversity predict ecosystem productivity better than species diversity? Ecological Indicators, 122: 107212. DOI: 1016/j.ecolind.2020.107212
- Peng, J., Liu, Z., Liu, Y., Wu, J. and Han, Y., 2012.Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecological Indicators, 14(1): 28-39. DOI: 1016/j.ecolind.2011.08.011
- Pringle, M. J., Denham, R. J. and Devadas, R., 2012.Identification of cropping activity in central and southern Queensland, Australia, with the aid of MODIS MOD13Q1 imagery. International Journal of Applied Earth Observation and Geoinformation, 19: 276-285. DOI: 1016/j.jag.2012.05.015
- Purevdorj, T. and Tateishi, R., 1998.Vegetation cover estimate of arid and semi-arid regions by NOAA AVHRR data. Journal of the Japan Society of Photogrammetry and Remote Sensing, 37(1): 18-28. DOI: 4287/jsprs.37.18
- Rapiya, M., Ramoelo, A. and Truter, W., 2023.Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data. Environmental Monitoring and Assessment, 195(12): 1544. DOI: 1007/s10661-023-12133-5
- Riquelme, L., Duncan, D. H., Rumpff, L. and Vesk, P. A., 2022.Using remote sensing to estimate understorey biomass in semi-arid woodlands of South-Eastern Australia. Remote Sensing, 14(10): 2358. DOI: 3390/rs14102358
- Riquelme, L., Rumpff, L., Duncan, D. H. and Vesk, P. A., 2024.Comparing grass biomass estimation methods for management decisions in a semi‐arid landscape. Applied Vegetation Science, 27(3): e12792. DOI: 1111/avsc.12792
- Schucknecht, A., Meroni, M., Kayitakire, F. and Boureima, A., 2017.Phenology-based biomass estimation to support rangeland management in semi-arid environments. Remote Sensing, 9(5): 463. DOI: 3390/rs9050463
- Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S. and Wang, Y., 2015.Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sensing of Environment, 163: 326-340. DOI: 1016/j.rse.2015.03.031
- Xie, Y., Sha, Z., Yu, M., Bai, Y. and Zhang, L, 2009.A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecological Modelling, 220(15): 1810-1818. DOI: 1016/j.ecolmodel.2009.04.025
- Xue, J. and Su, B., 2017.Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017(1): 1353691. DOI: 1155/2017/1353691
- Zolfaghari, F., Azarnivand, H., Khosravi, H., Zehtabian, G. and Khalighi Sigaroodi, S., 2019. The Effect of Vegetation Cover on Microclimate in Dry land Ecosystem (Case Study: Sistan Plain). Journal of Range and Watershed Managment, 71(4): 901-914. doi: 10.22059/jrwm.2018.234109.1130