همکاری با انجمن علمی مدیریت و کنترل مناطق بیابانی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی مرتع، گروه مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استاد، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، پژوهشکده مدیریت آب، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانش‌آموخته کارشناسی ارشد مرتع‌داری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

4 دانشیار، گروه علوم خاک، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

5 دکترای علوم مهندسی مرتع، گروه مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

6 دانشجوی دکتری مدیریت منابع خاک، گروه علوم خاک، دانشکده کشاورزی، دانشگاه تبریز، ایران

10.22092/ijrdr.2025.134828

چکیده

سابقه و هدف
فشار چرای دام بر مراتع و تخریب روزافزون این اراضی می‌تواند اثرهای مخربی بر مشخصه‌های خاک ایجاد کند. ازجمله روش‌های اصلاحی خاک‌های تخریب شده، افزایش حاصلخیزی مراتع و تلاش برای بهبود پایداری خاک و کاهش لگدکوبی با محدودیت چرای دام می‌باشد. از قرق به عنوان یکی از روش‌های تجدید حیات طبیعی برای بهبود وضعیت پوشش گیاهی و خاک در برنامه اصلاحی و احیایی مراتع استفاده می‌شود. این پژوهش با هدف بررسی تاٴثیر قرق بر ویژگی های شیمیایی (هدایت الکتریکی، پتاسیم قابل جذب، فسفر قابل جذب، کربن آلی، نیتروژن کل و واکنش خاک)، زیستی (تنفس میکروبی پایه، تنفس میکروبی برانگیخته، کربن زی‌توده میکروبی، بهره متابولیک و سهم میکروبی خاک) و آنزیمی خاک (آلکالین فسفاتاز، دهیدروژناز و آنزیم اوره‌آز) در داخل و خارج قرق شغال‌دره شهرستان نمین انجام شد.
مواد و روش‌ها
برای انجام این تحقیق، قرق شغال‌دره در شهرستان نمین در استان اردبیل انتخاب شد. هجده نمونه خاک از شش سایت (سه سایت در داخل و سه سایت در خارج قرق) از عمق 5 تا 20 سانتی‌متری به صورت تصادفی - سیستماتیک از سه ترانسکت صد متری (در هر ترانسکت نمونه خاک از ابتدا، وسط و انتهای ترانسکت برداشت و بعد باهم مخلوط و به عنوان یک نمونه در هر ترانسکت در نظر گرفته شد). هر ترانسکت با فاصله 50 متر از هم انتخاب شد. نمونه‌ها را بلافاصله در مخزن یونولیت یخدار گذاشته و به آزمایشگاه منتقل و در یخچال منهای 80 درجه تا مرحله انجام آزمایش نگهداری گردید. ویژگی‌های بافت خاک، میزان شن، رس و سیلت، هدایت الکتریکی، پتاسیم قابل جذب، فسفر قابل جذب، کربن آلی، نیتروژن کل، واکنش خاک، تنفس میکروبی پایه، تنفس میکروبی برانگیخته، کربن زی‌توده میکروبی، بهره‌متابولیک، بهره‌میکروبی خاک، آنزیم‌های آلکالین فسفاتاز، دهیدروژناز و اوره‌آز اندازه‌گیری شد. تجزیه‌وتحلیل داده‌ها در دو منطقه داخل و خارج قرق با استفاده از آزمون t دو نمونه‌ای مستقل  انجام شد. نرمال بودن داده‌ها با آزمون شاپیرو-ویلک و همبستگی بین مشخصه‌های خاک با ضریب پیرسون در نرم‌افزار SPSSVer22 بررسی شد.
نتایج
نتایج نشان داد بافت خاک لومی شنی است، اما بین سایت‌های داخل و خارج قرق اختلاف معنی‌دار 5% P≤ وجود دارد، به گونه‌ای که میزان رس و سیلت در داخل قرق (به ترتیب 88/9 و 77/32 درصد) و میزان شن در خارج قرق 88/63 درصد بیشتر بود. پارامترهای هدایت الکتریکی، کربن آلی، پتاسیم (عصاره اشباع)، اسیدیته، فسفر قابل جذب و نیتروژن کل در خارج قرق دارای بیشترین مقدار بودند. تمام پارامترهای زیستی بجز بهره متابولیک، تفاوت معنی‌داری بین داخل و خارج قرق داشتند، به‌نحوی‌که بیشترین میزان تنفس میکروبی پایه، تنفس میکروبی برانگیخته و بهره میکروبی به ترتیب با مقادیر 32/0، 96/1 (mg Co2.g-1.day-1) و 12/1 (mg Cmic.g-1 C org) مربوط به داخل قرق و کربن زی‌توده میکروبی 80/513 (mg C mic. g-1) متعلق به خارج قرق بود. در داخل قرق، همبستگی مثبت بین درصد سیلت و شن و همبستگی منفی بین درصد رس و بهره متابولیک وجود داشت. فسفر قابل جذب با نیتروژن، کربن آلی و بهره میکروبی همبستگی مثبت نشان داد. نیتروژن نیز با کربن آلی، بهره متابولیک و بهره میکروبی همبستگی مثبت داشت. تنفس پایه و برانگیخته نیز همبستگی مثبت داشتند و کربن آلی با بهره متابولیک و میکروبی همبستگی مثبت نشان داد. در مقابل، pH با بهره میکروبی و کربن زی‌توده میکروبی همبستگی منفی داشت. در خارج قرق نیز، درصد رس با فسفر قابل جذب همبستگی مثبت و درصد سیلت و شن همبستگی منفی داشتند. نیتروژن با کربن آلی همبستگی مثبت نشان داد. تنفس پایه با تنفس برانگیخته و کربن زی‌توده میکروبی همبستگی مثبت داشت و تنفس برانگیخته نیز با کربن زی‌توده میکروبی همبستگی مثبت داشت. بهره متابولیک با بهره میکروبی همبستگی مثبت و کربن زی‌توده میکروبی با بهره متابولیک همبستگی منفی نشان داد. در ارتباط با آنزیم‌های دهیدروژناز، آلکالین فسفاتاز و اوره‌آز حداکثر میزان آنها به ترتیب 85/2 (µg TPF. g-1 dm. 16h-1)، 71/585 (µg pNP. g-1 dm. 1h) و 79/238 (µ.g N. g-1 dm. 2h) در داخل قرق مشاهده شد.
نتیجه‌گیری
چرای بیش از حد دام در اراضی مرتعی ایران، با کاهش ورود میزان بقایای گیاهی به خاک، سبب تغییر در ویژگی‌های شیمیایی، زیستی و آنزیمی خاک می‌شود. این کاهش مواد آلی و اختلال در فعالیت میکروارگانیسم‌ها، حاصلخیزی خاک را کاهش می‌دهد. یافته‌های این پژوهش نشان می‌دهد که اعمال قرق منجر به بهبود فعالیت‌های زیستی خاک، ازجمله افزایش فعالیت آنزیم‌ها و تنفس میکروبی، در منطقه قرق شده است. علاوه بر این، تغییرات مثبت در بافت خاک، به‌ویژه افزایش درصد رس و سیلت، مشاهده گردید. اگرچه کاهش جزئی در سطوح برخی مواد مغذی و جمعیت میکروارگانیسم‌های خاک در داخل قرق وجود داشت، این تغییرات احتمالاً تحت تأثیر الگوی چرای حیات وحش رخ داده و در نهایت به ایجاد یک اکوسیستم پایدار و متعادل با کارکرد بهینه در بلندمدت کمک می‌کند. ازاین‌رو، این نتایج بر نقش مؤثر مدیریت قرق در ارتقاء سلامت و پایداری اکوسیستم‌های طبیعی تأکید دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Comparison of Some Chemical, Biological and Enzymatic Characteristics of Soil Inside and Outside Exclosure of Shoghaldareh in Namin County

نویسندگان [English]

  • Sanaz Yousefvand 1
  • Ardavan Ghorbani 2
  • Mina Hosseinnejad Jadidi 3
  • Mehdi Moameri 2
  • Akbar Qavidel 4
  • Farid Deljo 5
  • Narjes Rostami 6

1 Ph.D. Student in Rangeland Sciences and Engineering, Department of Range and Watershed Management, Faculty of Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 Professor, Department of Range and Watershed Management, Faculty of Natural Resources, Water Management Research Center, University of Mohaghegh Ardabili, Ardabil, Iran

3 MSc. in Rangeland Science and Engineering, Department of Range and Watershed Management, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil, Iran

4 Associate Professor, Department of Soil Science, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil, Iran

5 MSc. in Rangeland Science and Engineering, Department of Range and Watershed Management, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil, Iran

6 PhD, Student in Soil Resource Management, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

چکیده [English]

Background and objectives
The pressure of livestock grazing on rangelands and the increasing degradation of these ecosystems can have destructive effects on soil characteristics. Methods for improving degraded soils include increasing rangeland fertility, enhancing soil stability, and reducing trampling by restricting livestock grazing. Exclosure is widely used as a natural regeneration strategy to improve vegetation conditions, soil fertility, and conservation outcomes in rangeland restoration and improvement programs. The present study aimed to investigate the effects of exclosure on soil parameters, including electrical conductivity, absorbable potassium, absorbable phosphorus, organic carbon, total nitrogen, and soil reaction. Biological parameters, including basal microbial respiration, stimulated microbial respiration, microbial carbon, metabolic quotient, and soil microbial and enzymatic activities (alkaline phosphatase, dehydrogenase, and urease) were measured both inside and outside the Shoghaldareh exclosure in Nemin County.
Methodology
To conduct this study, the Shoghaldareh exclosure located in Nemin County (Ardabil Province) was selected. A total of 18 soil samples were collected from six sites (3 inside and 3outside the exclosure) at a depth of 5–20 cm. Samples were randomly taken along three 100-m transects (from the beginning, middle, and end of each transect, which were subsequently mixed to form one composite sample). Each transect was established 50 m apart. Collected samples were transferred to the laboratory in refrigerated containers and stored at –80°C until analyses were performed. The investigated parameters included soil texture (sand, clay, and silt), electrical conductivity, absorbable potassium, absorbable phosphorus, organic carbon, total nitrogen, soil reaction, basal microbial respiration, stimulated microbial respiration, microbial carbon, metabolic quotient, soil microbial quotient, and the activities of alkaline phosphatase, dehydrogenase, and urease. Data analysis was carried out separately for the two areas (inside and outside the exclosure) using an independent two-sample t-test. Data normality was assessed using the Shapiro–Wilk test, and correlations among soil characteristics were evaluated using Pearson’s coefficient in SPSS Ver. 22.
Results
The results indicated that the studied area had a sandy loam texture. A significant difference at the 5% probability level was observed between the inside and outside of the exclosure, such that the clay and silt contents inside the exclosure were 9.88% and 32.77%, respectively, while sand content was 63.88% higher outside the exclosure. Electrical conductivity, organic carbon, potassium (saturated extract), acidity, absorbable phosphorus, and total nitrogen showed the highest values outside the exclosure. All biological parameters, except metabolic quotient, exhibited significant differences between the interior and exterior of the exclosure. The highest levels of basal microbial respiration, stimulated microbial respiration, and microbial quotient—corresponding to 0.32 and 1.96 mg CO₂ g⁻¹ day⁻¹ and 1.2 mg Cmic g⁻¹ C org—were recorded inside the exclosure; whereas microbial biomass carbon (513.80 mg Cmic g⁻¹) belonged to the area outside the exclosure. Inside the exclosure, silt and sand percentages showed a positive correlation, whereas clay percentage had a negative correlation with the metabolic quotient. Available phosphorus exhibited a positive correlation with nitrogen, organic carbon, and the microbial quotient. Nitrogen was positively correlated with organic carbon, the metabolic quotient, and the microbial quotient. Basal and induced respiration were positively correlated, and organic carbon showed a positive correlation with both the metabolic and microbial quotients. In contrast, pH had a negative correlation with the microbial quotient and microbial biomass carbon. Outside the exclosure, clay percentage showed a positive correlation with available phosphorus, whereas silt and sand showed negative correlations. Nitrogen exhibited a positive correlation with organic carbon. Basal respiration had a positive correlation with induced respiration and microbial biomass carbon, and induced respiration was positively correlated with microbial biomass carbon. The metabolic quotient had a positive correlation with the microbial quotient, while microbial biomass carbon showed a negative correlation with the metabolic quotient. Regarding enzymatic activities, the highest values of dehydrogenase, alkaline phosphatase, and urease—2.85 µg TPF g⁻¹ dm 16 h⁻¹, 585.71 µg pNP g⁻¹ dm h⁻¹, and 238.79 µg N g⁻¹ dm, respectively—were recorded inside the exclosure.
Conclusion
Excessive grazing in Iran’s rangelands reduces the input of plant residues into the soil and alters chemical, biological, and soil enzymatic properties. This reduction in organic matter and disruption of microbial activity decreases soil fertility. The findings of this research demonstrate that implementing grazing exclosure improves soil biological activities, including increased enzymatic activity and microbial respiration, within the excluded area. Furthermore, positive changes in soil texture, particularly increases in clay and silt contents, were observed. Although a slight decrease in certain soil nutrients and microbial populations occurred within the exclosure, these changes were likely influenced by wildlife grazing patterns and ultimately contributed to establishing a sustainable, balanced ecosystem with optimized long-term functioning. Therefore, the results underscore the important role of grazing exclosure management in enhancing the health and sustainability of natural ecosystems.
 

کلیدواژه‌ها [English]

  • Alkaline phosphatase enzyme
  • Ardabil province
  • biological parameters of soil
  • exclosure
  • microbial carbon mass
  • Aghabeygi, S. and Fattahi, B., 2017. The effect of vegetation and soil properties on the hydrological behavior of watersheds (Case Study: Paired watershed of Gonbad). Journal of Rangeland, 11(1): 83-93, (In Persian). https://dor.isc.ac/dor/20.1001.1.20080891.1396.11.1.5.2.
  • Ahmadi, T., Malekpour, B. and Kazemi Mazandarani, Q. S., 2018. Investigation of exclosure effect upon physical and chemical properties of soil at Kohneh Lashak Mazandaran. Journal of Plant Ecophysiology, 3: 89-100, (In Persian). https://dorl.net/dor/20.1001.1.20085958.1390.3.8.8.6.
  • Akhzari, D., Suri, L. and Omidari, Sh., 2016. Studying the effect of grazing on soil physicochemical properties in a summer rangeland (case study: Zagheh Rangeland, Lorestan Province). Journal of Rangeland Management, 3(1): 19-32, (In Persian). https://civilica.com/doc/952913/.
  • Aldezabal, A., Moragues, L., Odriozola, I. and Mijangos, I., 2015. Impact of grazing abandonment on plant and soil microbial communities in an Atlantic Mountain grassland. Applied Soil Ecology, 96: 251-260.
  • https://doi.org/10.1016/j.apsoil.2015.08.013.
  • Alef, A. and Nannipieri, P., 1995. Methods in Applied Soil Microbiology and Biochemistry. Academic Press, The UK, 567p.
  • Allen, J.C., 1986. Soil properties and fast-growing tree species in Tanzania. Forest Ecology and Management, 16(1-4): 127-147. https://doi.org/10.1016/0378-1127(86)90014-9.
  • Ataian, B., Karmi, F., Akhzari, D. and Kiani, G., 2023. Comparative study of vegetation parameters, soil elements, and organic carbon storage in mountain rangelands under exclosure and grazing management: a case study in Asadabad, Hamadan. Journal of Rangeland, 17(2): 247-262, (In Persian). https://dor.isc.ac/dor/20.1001.1.20080891.1402.17.2.6.7.
  • Bakhshi, J., Javadi, S.A., Tavili, A. and Arzani, H., 2020. Study on the effects of different levels of grazing and exclosure on vegetation and soil properties in semi-arid rangelands of Iran. Acta Ecologica Sinica, 40(6): 425-431. https://doi.org/10.1016/j.chnaes.2019.07.003.
  • Baliani, A. and Vaezi, A.R., 2018. Investigation of the relationships between rainfall erosion processes, slope and antecedent water content in semi-arid soils. Water and Soil, 32(5): 943-959, (In Persian). https://dor.isc.ac/dor/20.1001.1.20084757.1397.32.5.8.0.
  • Bastida, F., Moreno, J.L., Hernandez, T. and Garcia, C., 2006. Microbiological degradation index of soils in a semiarid climate. Soil Biology and Biochemistry, 38: 3463–3473. https://doi.org/10.1016/j.soilbio.2006.06.001.
  • Bazgir, M., Menati, T., Rostaminya, M. and Mahdavi, A., 2020. Soil microbial biomass and activity of Oak Forest in three different regions in Ilam province. Journal of Soil Biology, 8(2): 155-164, (In Persian). https://doi.org/10.22092/sbj.2020.122742.
  • Brejda, J.J., Moorman, T.B., Karlen, D.L. and Dao, T.H., 2000. Identification of regional soil quality factors and indicators I. Central and Southern High Plains. Soil Science Society of America Journal, 64(6): 2115-2124. https://doi.org/10.2136/sssaj2000.6462115x.
  • Bremmer, J. M. and Mulvaney, C. S., 1982. Nitrogen total: 595–624. In: Page, A. L., (Ed.). Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. ASA Monograph, Madison, WI. https://doi.org/10.2134/agronmonogr9.2.2ed.c31.
  • Candel-Perez, D., Lucas-Borja, M.E., Plaza-Alvarez, P.A., Yanez, M.D.C., Soria, R., Ortega, R. and Zema, D.A., 2024. Effects of grazing on soil properties in Mediterranean forests (Central-Eastern Spain). Journal of Environmental Management, 354: 120316. https://doi.org/10.1016/j.jenvman.2024.120316.
  • Cardoso, E. J. B. N., Vasconcellos, R. L. F., Bini, D., Miyauchi, M. Y. H., Santos, C. A. D., Alves, P. R. L. and Nogueira, M. A., 2013. Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health. Scientia Agricola, 70(4): 274-289. https://doi.org/10.1590/S0103-90162013000400009.
  • Carrera, L.M., Buyer, J.S., Vinyard, B., Abdul-Baki, A.A., Sikora, L.J. and Teasdale, J.R., 2007. Effects of cover crops, compost, and manure amendments on soil microbial community structure in tomato production systems. Applied Soil Ecology, 37(3): 247-255. https://doi.org/10.1016/j.apsoil.2007.08.003.
  • Dadgar, M., Aliha, M. and Faramarzi, E., 2011. Relationship between available phosphorus and some soil physical and chemical characteristics in Absard Plain (Damavand Province). Iranian Journal of Range and Desert Research, 18(3): 498-504, (In Persian). https://doi.org/10.22092/ijrdr.2011.102185.
  • Dalal, R.C., 1998. Soil microbial biomass, what do the numbers really mean. Australian Journal of Experimental Agriculture, 38: 649–665. https://doi.org/10.1071/EA97142.
  • Enayatizamir, N., Noruzi Masir, M. and Ghadamkhanii, A., 2020. The effect of plant growth promoting bacteria on some biological indicators and soil organic carbon forms under wheat cultivation. Journal of Water and Soil Science, 23(4): 171-181, (In Persian). http://dx.doi.org/10.47176/jwss.23.4.37642.
  • Esfandiari, H., Sefidi, K., Ghavidel, A., Esmaeilpour, M., Amanzadeh, B. and Sadeghi, S.M.M., 2022. Effect of forestry practices on the biological characteristics of soils (Case study: Beech Forest of Asalem). Water and Soil Management and Modelling, 3(4): 16-28, (In Persian). https://dor.isc.ac/dor/20.1001.1.27832546.1402.3.4.3.7.
  • Fakhimi, A.L., Shirmardi, H.A. and Asadi, S.M., 2023. Vegetation Indices and Species Diversity Monitoring under Exclosure Management in Semi-steppe Rangelands: A case study of Ghalehgharak Rangelands, Chaharmahal and Bakhtiari Province. Journal of Rangeland, 17(3): 382-397, (In Persian). https://dor.isc.ac/dor/20.1001.1.20080891.1402.17.3.4.7.
  • Fukuzawa, K., Shibata, H., Takagi, F., Satoh, K., Koike, T. and Sasa, K., 2013. Temporal variation in fine-root biomass, production and mortality in a cool temperate forest covered with dense understory vegetation in northern Japan. Forest Ecology and Management, 310: 700-710. https://doi.org/10.1016/j.foreco.2013.09.015.
  • Garcia-Orenes, F., Guerrero, C., Roldan, A., Mataix-Solera, J., Cerda, A., Campoy, M. and Caravaca, F., 2010. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil and Tillage Research, 109(2): 110-115. https://doi.org/10.1016/j.still.2010.05.005.
  • Gee, G. W. and Bauder, J. W., 1982. Particle size analysis. In: Klute, A., (Ed.). Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. American Society of Agronomy/Soil Science Society of America, Madison, WI. https://doi.org/10.2136/sssabookser5.1.2ed.c15.
  • Ghafari, S., Ghorbani, A., Arjamandi, K. L., Timourzadeh, A., Hashemi, M. and Jafari, K., 2017. Effect of grazing intensity on vegetation and soil properties (Case study: in rangelands of Kolash village, ParsAbad, Ardabil province). Journal of Plant Ecosystem Conservation, 10(5): 175-196, (In Persian). https://civilica.com/doc/491140/.
  • Ghobadi, A. and Akhzari, D., 2021. Effects of Rangeland Exclosure on Chemical and Organic Properties of Soil (Case study: Gonbad Area). Journal of Environmental Science and Technology, 221-223, (In Persian). https://civilica.com/doc/1287261/.
  • Ghorbani, J., Sefidi, K., Keyvan Bahjo, F., Moamari, M., Soltani, N. and Tularud, A.A., 2014. Effects of different grazing intensities on some soil physical and chemical properties in southeastern rangelands of Sabalan mountain. Journal of Rangeland, 9(4): 353-366, (In Persian). https://dor.isc.ac/dor/20.1001.1.20080891.1394.9.4.5.4.
  • Heidari Ghahfarrokhi, Z., Ebrahimi Asgari, A., Pordanjani, H., Asadi, E. and Shirmardi, H.A., 2024. Effects of Livestock Grazing on Vegetation and Soil Properties in Rangelands, A Case Study of Farsan–Chaharmahal Va Bakhtiari Province. Journal of Rangeland, 17(4): 529-549, (In Persian). https://dor.isc.ac/dor/20.1001.1.20080891.1402.17.4.3.8.
  • Heshmati, M. and Ghaitouri, M., 2020. Effects of Long Term Grazing Exclusion on Some Soil Physicochemical Characteristics and Sustainability. Journal of Soil Research, 35(1): 15-26, (In Persian). https://dor.isc.ac/dor/20.1001.1.22287124.1400.35.1.3.3.
  • Heydarian Aghakhani, M., Naqi Pourbarj, A.A. and Tavakoli, H., 2010. The Effects of grazing intensity on vegetation and soil in Sisab rangelands, Bojnord, Iran. Iranian Journal of Range and Desert Research, 17(2): 243-255, (In Persian). https://sid.ir/paper/107037/fa.
  • Hosseinnejad Jadidi, M., Ghorbani, A., Moamri, M., Qavidel, A., Dadjo, F. and Rostami, N., 2022. The effect of exclosure on the stimulated microbial respiration of soil (Case study: Shghal Dere pasture, Nemin city, Ardabil province). The Third National Conference on Laboratory Equipment and Technologies, Ardabil, (In Persian). https://civilica.com/doc/1560643.
  • Hosseinzadeh, G., Jalilund, H. and Temartash, R., 2008. Vegetation Cover Changes and Some Chemical Soil Properties in Pastures with Different Grazing Intensities. Iranian Journal of Range and Desert Research, 14(4): 500-512, (In Persian). https://civilica.com/doc/1634754/.
  • Jafari Haghighi, M., 2003. Methods of Soil Analysis, Sampling and Soil Analysis, Important Physicochemical Properties with Emphasis on the Theory and Application of the Principles of Nadaya Zahra Publications. Nadaya Zahra Publications, Tehran, 187p (In Persian). https://www.gisoom.com/book/1265571/.
  • Jalilian, F., Behmanesh, B., Mohammad Esmaeili, M. and Gholami, P., 2017. Comparison of rangeland vegetation cover and soil properties variations affected by flood spreading, enclosure, and grazing uses. Journal of Water and Soil Science, 21(2): 29-43, (In Persian). http://dx.doi.org/10.18869/acadpub.jstnar.21.2.29.
  • Jalilian, S., Nainiva, S. P. and Jalilian, S., 2021. Introducing suitable plant species for rill erosion control. Water and Soil Management and Modelling, 1(2): 60-74, (In Persian). http://dx.doi.org/10.18869/acadpub.jstnar.21.2.29.
  • Jia, B., Zhou Wang, G., Wang, Y. and Weng, E., 2007. Effects of grazing on soil respiration of Leymus chinensis steppe. Climatic Change, 82(1): 211-223. https://doi.org/10.1007/s10584-006-9136-0.
  • Jiao, T., Nie, Z., Zhao, G. and Cao, W., 2016. Changes in soil physical, chemical, and biological characteristics of a temperate desert steppe under different grazing regimes in northern China. Communications in Soil Science and Plant Analysis, 47(3): 338-347. https://doi.org/10.1080/00103624.2015.1122801.
  • Junidi, H., Amani, S. and Karmi, P., 2015. Effects of grazing intensities on carbon sequestration and storage in the rangelands of Bijar protected area. Journal of Rangeland, 10(1): 53-67, (In Persian). https://dor.isc.ac/dor/20.1001.1.20080891.1395.10.1.5.5.
  • Kamali, N., Sadeghipour, A., Souri, M. and Mastinu, A., 2022. Variations in soil biological and biochemical indicators under different grazing intensities and seasonal changes. Land, 11(9): 1537. https://doi.org/10.3390/land11091537.
  • Kandeler, E. and Gerber, H., 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6(1): 68-72. https://doi.org/10.1007/BF00257924.
  • Khatibi, R. and Farahi, M., 2024. Study on the impact of exclosures on the physicochemical properties of rangeland soil (case study: northern Golestan province, Sufikam rangelands). Environmental Sciences, 22(3): 483-494, (In Persian). https://doi.org/10.48308/envs.2024.1360.
  • Kianysadr, M., Imani, F., Melhosseini Daran,i K. and Arefian, A., 2020. Assessing effect of exclusion on the quality of Gonbad rangelands using with density and species richness indices. Journal of Environmental Science Studies, 5(1): 2268-2274, (In Persian). https://www.magiran.com/p2110129.
  • Kouch, Y. and Noghre, N., 2019. The effect of forest, rangeland and agriculture covers on soil microbial characters and enzyme activities. Journal of Water and Soil Conservation, 26(3): 127-143, (In Persian). https://doi.org/10.22069/jwsc.2019.16191.3147.
  • Kouch, Y., Moghimian, N., Wirth, S. and Noghre, N., 2020. Effects of grazing management on leaf litter decomposition and soil microbial activities in northern Iranian rangeland. Geoderma, 361, 114100. https://doi.org/10.1016/j.geoderma.2019.114100.
  • Li, M., Wang, L., Li, J., Peng, Z., Wang, L., Zhang, X. and Xu, S., 2022. Grazing exclusion had greater effects than nitrogen addition on soil and plant community in a desert steppe, Northwest of China. BMC Plant Biology, 22(1): 1-9. https://doi.org/10.1186/s12870-021-03400-z.
  • Martens, D. A. and Frankenberger Jr, W. T., 1991. Saccharide composition of extracellular polymers produced by soil microorganisms. Soil Biology and Biochemistry, 23(8): 731-736. https://doi.org/10.1016/0038-0717(91)90142-7.
  • Masoumi Tabar Zanjani, A., Amanifar, S., Askari, M. S. and Hassani, A., 2025. The effect of land use change on some biological characteristics of soil in the rangelands of Sohrein region, Zanjan province. Iranian Journal of Soil and Water Research, 55(11): 2125-2143, (In Persian). https://doi.org/10.22059/ijswr.2024.378382.669739.
  • Matinizadeh, M., Khoshnavis, M., Timuri, M., and Shirvani, A., 2012. The effect of preservation on soil enzymes activities in Juniperus excelsa plantation of Chahartagh. Journal of Water and Soil Resources Conservation, 1(4): 45-52, (In Persian). https://www.magiran.com/p1147531.
  • Mazaheri, M. and Bazgir, M., 2019. The effect of climate and land uses on soil microbial biomass and activities. Iranian Journal of Forest, 11(2): 179-194, (In Persian). https://www.sid.ir/paper/123077/fa.
  • McGill, W. B., and Cole, C. V., 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma, 26(4): 267-286. https://doi.org/10.1016/0016-7061(81)90024-0.
  • Mirsidhhossini, H., Hamtpour, M., Bagheri Novir, S., Chaichi, M.R. and Mohseni Sarvi, M., 2016. Study of livestock grazing effects on chemical soil properties and surface vegetation of rangeland (case study: Makhmalkouh, Lorestan province). Journal of Agroecology, 6(1): 117-98. (In Persian). https://www.magiran.com/paper/citation?ids=1586441.
  • Mirzaei Mousand, A. and Ternian, F. A., 2019. Comparison of vegetation and soil characteristics in two tracts of rangeland, grazed and non-grazed (Case study: Northeast of Delfan County -Lorestan). Journal of Rangeland, 14(2): 171-182, (In Persian). https://www.magiran.com/p2153804.
  • Mofidi, M., Rashtbari, M., Abbaspour, H., Ebadi, A., Sheidai, E. and Motamedi, J., 2012. Impact of grazing on chemical, physical and biological properties of soils in the mountain rangelands of Sahand, Iran. Journal of Rangeland, 34(3): 297-303. https://doi.org/10.1071/RJ11087.
  • Moghimian, N., Hosseini, S.M., Kouch, Y. and Darki, B.Z., 2017. Impacts of changes in land use/cover on soil microbial and enzyme activities. Catena, 157: 407-414. https://doi.org/10.1016/j.catena.2017.06.003.
  • Muller, T. and Hoper, H., 2004. Soil organic matter turnover as a function of the soil clay content: consequences for model applications. Soil Biology and Biochemistry, 36(6): 877-888. https://doi.org/10.1016/j.soilbio.2003.12.015.
  • Nair, A. and Ngouajio, M., 2012. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Applied Soil Ecology, 58: 45-55. https://doi.org/10.1016/j.apsoil.2012.03.008.
  • Olsen, S. R. and Sommers, L. E., 1982. Phosphorus, pp. 403–430. In: Page, A. L., et al. (Eds.). Methods of soil analysis, part 2: chemical and microbiological properties, vol. 9. ASA. https://doi.org/10.2134/agronmonogr9.2.2ed.c24.
  • Parastesh, M., Fard, M. G., Alikhani, H. A., Etesami, H. and El-Kereamy, A., 2019. Vermicompost enriched with phosphate-solubilizing bacteria provides plant with enough phosphorus in a sequential cropping under calcareous soil conditions. Biological and Fertility of Soils, 55: 405-419. https://doi.org/10.1016/j.jclepro.2019.02.234.
  • Pirestani, N., Ahmadi Nadoushan, M., Abolhassani, M. H. and Zamani-Ahmadmahmoodi, R., 2023. Investigating the relationship between the amount of total nitrogen and some soil characteristics in the Zarin Shahr region. Iranian Journal of Soil Research, 37(2): 167-182, (In Persian). https://doi.org/10.22092/ijsr.2023.359235.674.
  • Riahi Samani, M. and Raiesi, F., 2014. Soil organic carbon dynamics in native rangelands exposed to grazing and ungrazing management in rangeland ecosystems of central Zagros. Water and Soil, 28(4): 742-753, (In Persian). https://doi.org/10.22067/jsw.v0i0.41417.
  • Riahi, M. and Raisi, F., 2013. Effects of livestock grazing on soil carbon, nitrogen and microbial biomass in some reference pastures of Chaharmahal va Bakhtiari province. Journal of Water and Soil Science, 22(1): 49-60, (In Persian). https://civilica.com/doc/1793423.
  • Rong, Y., Monaco, T. A., Liu, Z., Zhao, M. and Han, G., 2022. Soil microbial community structure is unaltered by grazing intensity and plant species richness in a temperate grassland steppe in northern China. European Journal of Soil Biology, 110: 103404. https://doi.org/10.1016/j.ejsobi.2022.103404.
  • Saeediyan, H., and Moradi, H.R., 2022. Comparing of the Runoff and Sediment of Different land uses in Gachsaran and Aghajari formations under rain simulation. Water and Soil Management and Modeling, 2(2): 55-68. doi:10.22098/MMWS.2022.9802.1065 (In Persian). https://doi.org/10.22098/mmws.2022.9802.1065.
  • Samadi Khangah, S., Ghorbani, A., Choukali, M., Moammari, M., Badrzadeh, M. and Motamedi, J., 2021. Effect of grazing exclosure on vegetation characteristics and soil properties in the Mahabad Sabzepoush rangelands, Iran. Ecopersia, 9(2): 139-152. https://dor.isc.ac/dor/20.1001.1.23222700.2021.9.2.7.5.
  • Sedaghati, N., Hasanzadeh, M. and Madani, A., 2022. Impact of crop type (Wheat and Pistachio) and soil properties (Depth, texture and nitrogen content) on the amount of carbon sequestration. Iranian Journal of Plant and Biotechnology, 17(1): 65-74, (In Persian). https://www.magiran.com/p2464528.
  • Habashi, H. 2015. Microbial respiration and microbial biomass C relationship with soil organic matter in different types of mixed beech forest. Forest Research and Development, 1(2), 135-144. (In Persian).
  • Sheidai Karkaj, E., Sepehry, A., Barani, H. and Motamedi, J., 2017. Soil organic carbon reserve relationship with some soil properties in East Azerbaijan rangelands. Journal of Rangeland, 11(2): 125-138, (In Persian). https://dor.isc.ac/dor/20.1001.1.20080891.1396.11.2.1.0.
  • Shifang, P., Hua, F. and Changgui, W., 2008. Changes in properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agriculture, Ecosystems and Environment, 124: 33-39. https://doi.org/10.1016/j.agee.2007.08.008.
  • Shirzadeh, N., AliAsgharzad, N. and Najafi, N., 2013. Changes in microbial biomass carbon, ecophysiological indices, basal respiration and substrate-induced respiration of soil after incubation with different lead levels. Water and Soil Science, 23(2): 111-124, (In Persian). https://civilica.com/doc/1587914/.
  • Shirmardi, H. A., Mojiri, A., Saeedfar, M., Tatian, M. and Gholami, P., 2016. Evaluation of the ability of stability assessment method in detecting the degree of stability of the rangelands under different grazing intensities and separating their conditions from each other (Case study: The semi-steppe rangelands of Karsanak and Bardeh of Chaharmahal and Bakhtiari province). Iranian Journal of Range and Desert Research, 23(1): 138-149, (In Persian). https://doi.org/10.22092/ijrdr.2016.106479.
  • Souri, L., Akhgari, D. and Omidvari, Sh., 2017. Investigating the effect of gharegh on some physicochemical properties of rangeland soils (Case Study: Zagheh rangelands, Lorestan province). Journal of Rangeland, 3(1): 19-32. https://doi.org/10.22069/jrm.2017.11754.1227.
  • Sparks, D. L., 1996. Methods of soil analysis. part 3. chemical methods. Soil Science Society American, Inc. American Society of Agronomy, Inc., Madison, Wisconsin. https://doi:10.2136/sssabookser5.3.
  • Station, Cheng W., Coleman, D.C., Carroll, C. R. and Hoffman, C.A., 1993. In situ measurement of root respiration and soluble carbon concentrations in the rhizosphere. Soil Biology and Biochemistry, 25(9): 1189-1196. https://doi.org/10.1016/0038-0717(93)90214-V.
  • Sylvia, D.M., Fuhrmann, J.J., Hartel, P. G. and Zuberer, D.A., 2005. Principles and applications of soil microbiology. Ferdowsi University of Mashhad, 696p.
  • Tabatabai, M. A. and Bremner, J. M., 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4): 301-307. https://doi.org/10.1016/0038-0717(69)90012-1.
  • Thalmann, A., 1968. Zur methodik der bestimmung der dehydrogenaseaktivitat im boden mittels triphenytetrazoliumchlorid (TTC). Landwirtsch Forsch, 21: 249-258.
  • Varasteh, F., Ghorbani, A., Moammari, M. and Bidarlord, M., 2018. Variations comparison of canopy cover inside and outside the enclosure in Shoghaldareh rangelands of Namin, Ardabil province. In: The 13th National Conference on Watershed Management Science and Engineering of Iran and the 3rd National Conference on Conservation of Natural Resources and Environment, Management and Protection of Natural Resources and Environment, Ardabil, (In Persian). https://civilica.com/doc/827173/.
  • Viglizzo, E.F. and Vazquez-Amabile, G., 2019. Reassessing the role of grazing lands in carbon-balance estimations: Meta-analysis and review. Science of the Total Environment, 661: 531-542. https://doi.org/10.1016/j.scitotenv.2019.01.130.
  • Vitousek, P.M., Porder, S., Houlton, B.Z. and Chadwick, O.A., 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications, 20(1): 5-15. https://doi.org/10.1890/08-0127.1.
  • Walkley, A, and Black, I. A., 1934. Chromic acid titration for determination of soil organic matter. Soil Science, 63: 251.
  • Wang, W., Guo, J. and Oikawa, T., 2007. Contribution of root to soil respiration and carbon balance in disturbed and undisturbed grassland communities, northeast China. Journal of Biosciences, 32: 375-384. https://doi.org/1007/s12038-007-0036-x.
  • Wardle, D. A. and Ghani, A. A., 1995. A critique of the microbial metabolic quotient (qCO2) as a
    bioindicator of disturbance and ecosystem development. Soil Biology and Biochemistry, 27(12): 1601-1610. https://doi.org/10.1016/0038-0717(95)00093-T.
  • Xu, Z., Yu, G., Zhang, X., He, N., Wang, Q., Wang, S., Wang, R., Zhao, N., Jia, Y. and Wang, C., 2017. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology and Biochemistry, 104: 152–163. https://doi.org/10.1016/j.soilbio.2016.10.020.
  • Yong-Zhong, S., Yu-Lin, L., Jian-Yuan, C. and Wen-Zhi, Z., 2005. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena, 59: 267–278. https://doi.org/10.1016/j.catena.2004.09.001.
  • Zandi, L., Jafarian, Z., Kavian, A. and Kooch, Y., 2021. Investigation of changes in soil microbial characteristics due to changes in the type and land use age (Case study: Kiasar Mazandaran rangelands). Journal of Water and Soil Conservation, 28(2): 103-121, (In Persian). https://doi.org/10.22069/jwsc.2021.18970.3444.
  • Zarinkafesh, M., 1992. Applied pedology. Tehran University Publications, 247 p, (In Persian).China. European Journal of Soil Biology, 99: 103205.