همکاری با انجمن علمی مدیریت و کنترل مناطق بیابانی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی علوم خاک دانشگاه ارومیه، ایران

2 استادیار پژوهشگاه علوم و فنون هسته‌ای، پژوهشکده کشاورزی هسته‌ای، گروه خاک، آب و تغذیه گیاه، کرج، ایران

3 دانشجوی کارشناسی ارشد گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ایران

چکیده

در سال‌های اخیر، بخش زیادی از عرصه آبی دریاچه ارومیه خشک و بستری از رسوبات ریزدانه‌ی شور به وجود آمده که بسیار مستعد فرسایش بادی هستند. این پژوهش به منظور بررسی قابلیت برخی مدل‌های ریاضی در تشریح توزیع اندازه ذرات نهشته‌های بادی و پیش‌بینی حساسیت به فرسایش با استفاده از توزیع اندازه ذرات در تپه‌های ماسه‌ای بخشی از سواحل غربی دریاچه ارومیه صورت پذیرفت. در مجموع 48 نمونه از رئوس یک شبکه 500×500 متری و از عمق 5-0 سانتی‌متری جمع‌آوری گردید. توزیع اندازه ذرات نمونه‌ها با استفاده از روش غربال خشک تعیین گردید. شاخص‌های آماری اندازه ذرات شامل قطر میانگین، جورشدگی، چولگی و کشیدگی محاسبه گردید. نه مدل توزیع اندازه ذرات جهت تعیین مدل مناسب در تشریح توزیع اندازه رسوبات بادی مورد بررسی قرار گرفته و از اجزاء وزنی مربوط به قطرهای 840>، 420>، 420 تا 840، 100> و 100 تا 840 میکرومتر جهت تعیین میزان حساسیت به فرسایش بادی استفاده گردید. نتایج نشان داد که میانگین اندازه ذرات در نهشته‌های بادی بطور متوسط برابر با μm310 (69/1f) بود که در مقایسه با اغلب بیابان‌های جهان، شامل ماسه‌های نسبتا درشت‌تر، با جورشدگی ضعیف و بسیار لپتوکورتیک بود. با توجه به ضرایب کارایی، مدل فردلاند بهترین عملکرد را در تشریح توزیع اندازه ذرات رسوبات مورد مطالعه نشان داد. نمونه‌های مورد مطالعه به طور میانگین دارای 97 درصد ذرات کوچکتر از 840 میکرومتر بوده و بسیار مستعد فرسایش بادی می‌باشند. حدود80 درصد ذرات قابلیت انتقال توسط فرآیند جهش و حدود 17 درصد توسط فرآیند تعلیق را دارند.

کلیدواژه‌ها

عنوان مقاله [English]

Prediction of the wind erodibility of sand dunes by particle size distribution models in parts of western coast of Urmia Lake

نویسندگان [English]

  • farokh asadzadeh 1
  • maral khodadadi 2
  • ehsan ehsan malahat 3

چکیده [English]

Huge parts of Urmia Lake have been dried up in recent years. As a result, vast areas of salty fine sand dunes, which are very susceptible to wind erosion, have been formed. This study was conducted to investigate the performance of Particle Size Distribution (PSD) models in description of sand dune PSDs and predicting wind erodibility by using PSD models in parts of western coast of Urmia Lake. Totally, 48 samples from a grid of 500m × 500m were collected. PSD of the samples was determined by dry sieving method. Statistical parameters of grain size including mean, sorting, skewness and kurtosis were calculated. Performance of nine PSD models in describing the grain size distribution was assessed by the coefficient of determination (R2), Root mean square error (RSME) and Akaike criterion (AIC) of the models. To determine wind erodibility of sand dunes, mass fractions of aggregates

کلیدواژه‌ها [English]

  • sand dunes
  • Particle Size Distribution models
  • wind erodibility
  • Urmia Lake
Abuodha, J.O.Z., 2003. Grain size distribution and composition of modern dune and beach sediments, Malindi Bay coast, Kenya. Journal of African Earth Sciences, 36(1): 41-54.
-Ahlbrandt, T.S., 1979. Textural parameters of aeolian deposits. 51-89. In: McKee, E. D. (Eds.), A Study of Global Sand Sesa. US Geological Survey Professional Paper 1052, Washington.
-Assouline, S., Tessier, D. and Bruand, A., 1998. A conceptual model of the soil water retention curve. Water Resources Research, 34(2): 223-231.
-Bagnold, R. A., 1937. The size-grading of sand by wind. Proceedings of the Royal Society of London, Mathematical and Physical Sciences, 163 (9): 250-264.
-Bagnold, R. A., 1941. The physics of blown sand and desert dunes. Chapman and Hall, London, 265p.
-Bird, N. R. A., Perrier, E. and Rieu, M., 2000. The water retention function for a model of soil structure with pore and solid fractal distributions. European Journal of Soil Science, 51(1): 55-63.
-Blott, S. J. and Pye, K., 2001. GRADISTAT, a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11): 1237-1248.
-Boadu, F. K., 2000. Hydraulic conductivity of soils from grain-size distribution: new models. Journal of Geotechnical and Geoenvironmental Engineering, 126(8): 739-746.
-Botula, Y. D., Cornelis, W. M., Baert, G., Mafuka, P. and Van Ranst, E., 2013. Particle size distribution models for soils of the humid tropics. Journal of Soils and Sediments, 13(4): 686-698.
-Buchan, G. D., 1989. Applicability of the simple lognormal model to particle-size distribution in soils. Soil Science, 147: 155–161.
-Buchan, G. D., Grewal, K. S. and Robson, A. B., 1993. Improved models particle diameter and standard deviation from sand, silt, and clay of particle-size distribution: an illustration of model comparison fractions, Soil Science, 152(4):  427–431.
-Chandler, D. G., Saxton, K. E. and Busacca, A. J., 2005. Predicting wind erodibility of loessial soils in the Pacific Northwest by particle sizing. Arid Land Research and Management, 19(1): 13-27.
-Chepil, W. S., 1941. Relation of wind erosion to the dry aggregate structure of a soil. Scintific Agricalture, 21(8):488-507.
-Flemming, B. W., 2007. The influence of grain-size analysis methods and sediment mixing on curve shapes and textural parameters: implications for sediment trend analysis. Sedimentary Geology, 202(3): 425-435.
-Folk, R. L. and Ward, W. C., 1957. The Brazos river bar. a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3–26.
-Folk, R. L., 1971. Longitudinal dunes of the northwestern edge of the Simpson Desert, Northern Territory, Australia. 1. Geomorphology and grain size relationships. Sedimentology 16: 5–54.
-Fredlund, M. D., Fredlund, D. G. and Wilson, G. W., 2000. An equation to represent grain-size distribution. Canadian Geotechnical Journal, 37(4): 817-827.
-Fryrear, D. W., Bilbro, J. D., Saleh, A., Schomberg, H., Stout, J. E. and Zobeck, T. M., 2000. RWEQ: Improved wind erosion technology. Journal of soil and water conservation, 55(2): 183-189.
-Ghanei Bafghi, M. J. and Yarahmadi, A. R. 2010. Investigation of relationship between granulometric characteristics of sand dune deposits and erosive wind direction using geostatistics in Hassan Abad of Bafgh. Journal of Range and Watershed Management. Iranian Journal of Natural Resources, 63(2): 235-248.
-Gimenez, D., Rawls, W. J., Pachepsky, Y. and Watt, J. P. C., 2001. Prediction of a pore distribution factor from soil textural and mechanical parameters. Soil science, 166(2): 79-88.
-Goudie, A. S., Allchin, B., Hegde, K. T. M., 1973. The former extensions of the great Indian sand desert. The Geographical Journal, 139: 243–257.
-Gupta, A. and Yan, D. S., 2006. Mineral processing design and operation: an introduction. Elsevier. Amsterdam, The Netherlands.
-Hwang, S. I., Lee, K. P., Lee, D. S. and Powers, S. E., 2002. Models for estimating soil particle-size distributions. Soil Science Society of America Journal, 66(4): 1143-1150.
-Indraratna, B., Nguyen, V. T. and Rujikiatkamjorn, C., 2012. Hydraulic conductivity of saturated granular soils determined using a constriction-based technique. Canadian Geotechnical Journal, 49(5): 607-613.
-Kolev, B., Rousseva, S. and Dimitrov, D., 1996. Derivation of soil water capacity parameters from standard soil texture information for Bulgarian soils. Ecological Modelling, 84(1): 315-319.
-Krumbein, W. C. and Pettijohn, F. J., 1938. Manual of Sedimentary Petrography. Appleton-Century Crofts, New York, 549p.
-Lancaster, N., 1981. Grain size characteristics of Namib Desert linear dunes. Sedimentology, 28: 115–122.
-Lancaster, N., 1995. Geomorphology of Desert Dunes. Routledge, London, 290p.
-Livingstone, I. and Warren, A., 1996. Aeolian geomorphology: an introduction. Longman. 211p.
-Mahmoodabadi, M., Dehghani, F. and Azimzadeh, H. R., 2011. Effect of soil particle size distribution on wind erosion rate. Journal of Soil Management and Sustainable Production, 1(1):81-97.
-Mehdizadeh, L., Asadzadeh F. and Samadi, A., 2015. Application of mathematical models to describe the particle size distribution of sediments behind successive check dams. Journal of Watershed Engineering and Management, 6(4): 323-336.
-Menéndez-Aguado, J. M., Peña-Carpio, E. and Sierra, C., 2015. Particle size distribution fitting of surface detrital sediment using the Swrebec function. Journal of Soils and Sediments, 15(9): 2004-2011.
-Mirzamostafa, N., Stone, L. R., Hagen, L. J. and Skidmore, E. L., 1998. Soil aggregate and texture effects on suspension components from wind erosion. Soil Science Society of America Journal, 62(5): 1351-1361.
-Mohammadkhan, S., 2012. Grain Size and Shape of Sand Grains in Ergs of Iran. Desert, 17(1): 57-64.
-Musila, W. M., 1998. Floristic composition, structure and distribution patterns of coastal sand dune vegetation: a case study of the coastal dunes between Malindi and Mambrui. Ph.D. thesis, Moi University, Eldoret, Kenya, 160p.
-Qian, Y., Wu, Z., Yang, H. and Jiang, C., 2009. Spatial heterogeneity for grain size distribution of eolian sand soil on longitudinal dunes in the southern Gurbantunggut Desert. Journal of Arid Land, 1(1): 26-33.
-Shao, Y. P., Raupach, M. R. and Leys, J. F., 1996. A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region.Soil Research, 34(3): 309-342.
-Sharratt, B., Feng, G. and Wendling, L., 2007. Loss of soil and PM10 from agricultural fields associated with high winds on the Columbia plateau. Earth Surface Processes and Landforms, 32(4): 621-630.
-Sierra, C., Menéndez-Aguado, J. M., Afif, E., Carrero, M. and Gallego, J. R., 2011. Feasibility study on the use of soil washing to remediate the As–Hg contamination at an ancient mining and metallurgy area. Journal of hazardous materials, 196: 93-100.
-Sun, D., Bloemendal, J., Rea, D. K., Vandenberghe, J., Jiang, F., An, Z. and Su, R., 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology, 152(3): 263-277.
-Tsoar, H., 1978. The Dynamics of Longitudinal Dunes: Final Technical Report. US Army European Research Office,171 p.
-Wang, X., Dong, Z., Zhang, J., Qu, J. and Zhao, A., 2003. Grain size characteristics of dune sands in the central Taklimakan Sand Sea.Sedimentary Geology, 161(1): 1-14.
-Wasson, R. J., 1983. Dune sediment types, sand colour, sediment provenance and hydrology in the Strzelecki-Simpson Desert, Australia. 121-139. In: Brookfield, M. E. and Ahlbrandt, T.S. (Eds.), Eolian Sediments and Processes. Elsevier, Amsterdam, 196p.
-Wills B. A. and Napier-Munn T. J., 2006. Mineral processing technology. Butterworth-Heinemann, Massachusetts, USA.
-Woodruff, N. P. and Siddoway, F. H., 1965. A wind erosion equation. Soil Science Society of America Journal, 29(5): 602-608.
-Zhao, P., Shao, M. A. and Horton, R., 2011. Performance of soil particle-size distribution models for describing deposited soils adjacent to constructed dams in the China Loess plateau. Acta Geophysica, 59(1): 124-138.
-Zhu, B., 2007. Geochemistry, hydrochemistry and sedimentology of the Taklamakan desert in Tarim basin, NW China. Ph.D Thesis, Institute of Geology and Geophysics Chinese Academy of Sciences (IGGCAS), Beijing, China.
-Zhu, B. Q., Yu, J. J., Rioual, P. and Ren, X. Z., 2014. Particle size variation of aeolian dune deposits in the lower reaches of the Heihe River basin, China. Sedimentary Geology, 301: 54-69.
-Zhuang, J., Jin, Y. and Miyazaki, T., 2001. Estimating water retention characteristic from soil particle-size distribution using a non-similar media concept. Soil Science, 166(5): 308-321.
-Zobeck, T. M. and Van Pelt, R. S., 2006. Wind-induced dust generation and transport mechanics on a bare agricultural field. Journal of hazardous materials, 132(1): 26-38.
-Zolfaghari, A., Tirgharsoltani, M. T., Yazdani, M. R and E. Soleimani-Sardo. 2014. Investigation of models for describing soil particle size distribution. Iranian Journal of Soil and Water Research, 45(2): 199-20.