همکاری با انجمن علمی مدیریت و کنترل مناطق بیابانی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهشکده منابع آب، مؤسسه تحقیقات آب، وزارت نیرو، تهران، ایران

2 دکتری، اقلیم شناسی ماهواره‌ای، سازمان جنگل‌ها، مراتع و آبخیزداری کشور، دفتر امور بیابان، تهران، ایران

چکیده

در تحقیق حاضر شدت و دامنه بیابانزایی ایران در دوره مطالعاتی 1394-1363 با استفاده از تصاویر ماهواره Landsat و با قدرت تفکیک مکانی 30 متر مورد بررسی قرار گرفت. جهت استخراج نقشه بیابانزایی کشور از تکنیک‌های نوین سنجش از دوری تحت عنوان تحلیل اختلاف طیفی استفاده گردید. تحلیل اختلاف طیفی روشی است برای برآورد سهم پوشش‌های مختلف زمینی در هر پیکسل تصویر ماهواره‌ای مختلط که از چند نوع پوشش زمینی تشکیل شده است. بدین منظور تغییرات پوشش‌های گیاهی، خاکی، آبی و شوره‌زارهای کل کشور مورد مطالعه قرار گرفت. بر اساس نتایج بدست آمده در حدود 227 هزار کیلومتر مربع از اراضی کشور در طول 32 سال گذشته دچار پدیده بیابانزایی با شدت کم شده است. این در حالی است که سطح مناطقی که تحت تاثیر بیابانزایی با شدت زیاد قرار گرفته‌اند، در حدود 33 هزار کیلومتر مربع و پهنه‌های آبی خشک شده در حدود 5 هزار کیلومتر مربع بوده است. این موضوع نشان دهنده وقوع بیابانزایی با شدت‌های مختلف در 6/15 درصد از مساحت کشور است که سهم استان‌های جنوب غربی (شامل استان‌های ایلام، کرمانشاه، لرستان و خوزستان) و جنوبی (شامل استان‌های بوشهر، فارس و هرمزگان) بسیار بیشتر از سایر استان‌های کشور بوده است. این در حالی است که در استان‌های شرقی و جنوب شرقی کشور به دلیل غالب بودن اقلیم بیابانی و نیمه‌بیابانی، کمترین شدت بیابانزایی مشاهده گردید.

کلیدواژه‌ها

عنوان مقاله [English]

Estimation of severity and extent of desertification in Iran using Landsat satellite images and spectral mixture analyses methods between 1984 and 2015

نویسندگان [English]

  • Nematollah karimi 1
  • Soudabeh Namdari 2

1 Assistant Professor, Department of Water Resources Research, Water Research Institute, Ministry of Energy, Tehran, Iran

2 Ph.D. in Satellite Meteorology, Desert Affairs Bureau, Forest, Range and Watershed Management Organization, Tehran, Iran

چکیده [English]

In the present study, the severity and extent of desertification in Iran was evaluated using Landsat satellite images with spatial resolution of 30 m during 1984 and 2015. In this regard, new remote sensing techniques (spectral mixture analysis methods) were used. Spectral Mixture Analysis (SMA) is a technique for estimating the proportion of each pixel that is covered by a series of known cover types in mixed pixels. In this regard, changes in vegetation, soil, water, and salt marshes of the entire country were studied. Results showed that about 227000 km2 of Iran included dsertification with low intensity over the past 32 years. In addition, the areas most affected by the desertification and dried water bodies were about 33000 and 5000 km2, respectively. This indicates the occurrence of desertification with varying intensities in 15.6% of the country. Results showed that the contribution of southwest provinces (Ilam, Kermanshah, Lorestan and Khozestan) and southern provinces (Boushehr, Fars and Hormozgan provinces) were much more than other provinces.However, in the eastern and southeastern provinces of the country, due to the dominance of desert and semi-desert climate, the lowest desertification intensity was observed.

کلیدواژه‌ها [English]

  • Desertification
  • Landsat Images
  • Spectral Mixture Analysis (SMA)
  • Change Vector Analysis (CVA)
-Abrisham, E., 2004. Evaluation and preparation of desertification map by analyzing ICD, FAO-UNEP and MICD methods in Fakhr Abad-Mehriz (Wind erosion). Master's thesis in desertification. Tehran University. 115p.
-Adams, J. B., Smith, M. O. and Johnson, P. E., 1986. Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander I Site. Journal of Geophysics Researches, 91(B8): 8098-8112.
-Dawelbait, M. and Morari, F., 2012. Monitoring desertification in a Savannah region in Sudan using Landsat images and spectral mixture analysis. Journal of Arid Environments, 80: 45-55.
-Ekhtesasi, M. R. and Mohajeri, S., 1995. Classification of the type and severity of land desertification in Iran (ICD). Second Conference on the Issues of Desert Regions in Kerman. November.
-Escadafal, R., Barbero-Sierra, C., Exbrayat, W., Marques, M. J., Akhtar-Schuster, M., Haddadi, A. and Ruiz, M., 2015. First appraisal of the current structure of research on land and soil degradation as evidenced by bibliometric analysis of publications on desertification. Journal of Land Degradation and Development, 26 (5): 413–422.
-Fahnestock, P., Lal, R. and Hall, G. F. 1996. Land use and erosional effects on two Ohio Alfisols: Crop yields. Journal of Sustainable Agriculture, 7: 85–100.
-Farajzadeh, M. and Karimi, N., 2013. Principles of Satellite Meteorology. Journal of Organization for Researching and Composing (SAMT). 236p.
-Gooya, A., 2003. Investigating the desertification factors of Hussein Abad Plain Mish Mast Qom and presenting a regional model, Master's thesis in Desertification. University of Tehran. 150 pages.
-Huete, A. R., Leeuwen, W. J. D., Hua, G., Qi, J. and Chehbouni, A. 1992. Normalization of multidirectional red and NIR reflectances with the SAVI. Journal of Remote Sensing of Environment, 41(2): 143-154.
-Imani, J., Ebrahimi, A., Tahmasebi, P. and Gholinejad, B., 2017. Comparison ground samples establishing, number and areas in Landsat 8, 30×30 pixels to aware correlation plant cover percentage with NDVI index in three study areas (Study area: Rangelands around Choghakhor Dam Lake in Chaharmahal and Bakhtiari province). Iranian Journal of Rangeland and Desert Research, 24(2): 429-440.
-Jacques, D. C., Kergoat, L., Hiernaux, P., Mougin, E., Defourny, P., 2014. Monitoring dry vegetation masses in semi-arid areas with MODIS SWIR bands. Journal of Remote Sensing of Environment, 153: 40-49.
-Jafari, R., 2001. Evaluation and preparation of desertification map by analyzing FAO_UNEP and ICD methods in Kashan area (wind erosion and water resource degradation). Master Degree in desertification. University of Tehran. 112 pages.
-Kazeminia, A. R., Rangzan, K. and Mahmoud Abadi, M., 2017. Assessment of Desertification using the MEDALUS model (Case study: the lands of west Ahvaz). Journal of RS and GIS for Natural Resources. 8(2): 111-126.
-Khosravi, H., 2004. Application of the Medalus Model in desertification of Kashan region. Master's Degree, Faculty of Natural Resources, University of Tehran, 156p.
-Khosroshahi, M., Mahmoudi, F. and Kashki, M. T., 2011. Determination of Desert Areas in Iran on the Bases of Geological Effected Factors. Journal of Geosciences, 20(80): 15-22.
-Lal, R., 1995. Erosion–crop productivity relationships for soils of Africa. Soil Science Society of America Journal, 59: 661–667.
-Li, J., Yang, X., Jin, Y., Yang, Z., Huang, W., Zhao, L., Gao, T., Yu, H., Ma, H. and Qin, Z., 2013. Monitoring and analysis of grassland desertification dynamics using Landsat images in Ningxia, China. Journal of Remote Sensing of Environment, 138: 19-26.
-Malila, W., 1980. Change vector analysis: An Approach for Detecting Forest Changes with Landsat. In Proceedings of the 6th Annual Symposium on Machine Processing of Remotely Sensed Data. Purdue University, 3 – 6 June 1980: 326 – 335.
-Mombani, M., Nasrollahi, M., Karimi, K. and Ara, H., 2018. Investigation and comparison of the maximum likelihood and fuzzy artmap methods in preparing and monitoring land use changes (Case study: Omidiyeh, Khuzestan province). Iranian Journal of Rangeland and Desert Research, 25(2): 248-262.
-Mombeni, M., Karamshahi, A. A., Azadnia, F., Garaee, P. and Karimi, K., 2016. Assessment of desertification intensity using IMDPA method (Case study: Dashte Abbas, Ilam). Journal of RS and GIS for Natural Resources. 7(3): 100-112.
-Mousavi, S. A., Farahpour, M., Shokri, M., Solaimani, K. and Godarzi, M., 2006. Vegetation cover change during 25 years, Case of Lar Dam basin. Iranian Journal of Rangeland and Desert Research, 13(3): 186-200.
-Nateghi, S., Zehtabian, G. H. and Ahmadi, H., 2008. Evaluation of Desertification Intensity in Segzi Plain Using IMDPA Model. Journal of Range and Watershed Management, 62(3): 419-431.
-Ray, T. W., Murray, B. C., 1996. Nonlinear spectral mixing in desert vegetation. Journal of Remote Sensing of Environment, 55(1): 59-64.
-Röder, A., Udelhoven, T., Hill, J., Del Barrio, G. and Tsiourlis, G., 2008. Trend analysis of Landsat-TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in Northern Greece. Journal of Remote Sensing of Environment, 112: 2863-2875.
-Smith, M.O., Ustin, S. L., Adams, J. B., Gillespie, A. R., 1990. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Journal of Remote Sensing of Environment, 31(1): 1-26.
-Tucker, C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2): 127-150.
-Tueller, P. T. and Oleson, S. G., 1989. Diurnal radiance and shadow fluctuations in a cold desert shrub plant community. Journal of Remote Sensing Environment, 29(1): 1-13.
-Yaghoobi, S., Faramarzi, M., Karimi, H. and Sarvarian, J., 2016. Assessment of efficiency of artificial neural network in predicting the trend of desertification processes by using GIS (Case study: Dehloran plain, Ilam). Journal of RS and GIS for Natural Resources, 7(3): 61-77.
-Zolfaghari, F. and Khosravi, H., 2016. Assessment of Desertification Severity Using IMDPA Model in Saravan Region. Journal of Geography and Environmental Planning, 27(2): 87-102.