همکاری با انجمن علمی مدیریت و کنترل مناطق بیابانی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد بیابان‌زدایی، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان، ایران

2 استادیار، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان، ایران

3 استادیار، گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، ایران

چکیده

پوشش مرتعی به‌عنوان یکی از مهم­ترین اجزای اکوسیستم مناطق خشک به­شمار می‌رود و تعیین تغییرات پوشش گیاهی مرتعی تحت تاثیر خشکسالی و ترسالی امری ضروری به­نظر می‌رسد. تحقیق پیش‌رو با هدف بررسی ارتباط میان شاخص‌های ماهواره‌ای و شاخص SPI در مراتع قم صورت گرفت. بدین منظور ابتدا شاخص SPI در میانگین‌های متحرک یک، سه، 5 و 7 ساله مورد محاسبه قرار گرفت. در مرحله بعد با استفاده از تصاویر سنجنده لندست و پس از انجام اصلاحات مورد نیاز این نوع از سنجنده بر روی تصاویر، از سه شاخص NDVI، MSAVI و EVI، نقشه پوشش گیاهی تهیه گردید. در نهایت به‌منظور بررسی ارتباط میان شاخص‌های تصاویر ماهواره‌ای با شاخص SPI از ضرایب همبستگی استفاده گردید. نتایج نشان دهنده همبستگی متوسط و خوب میان شاخص‌های ماهواره‌ای MSAVI با شاخص SPI در ماه‌های اوج رشد پوشش گیاهی با میانگین متحرک یک ماهه شاخص SPI بیشتر بود. نتایج این پژوهش نشان دهنده این است که جهت برآورد خشکسالی کشاورزی از طریق سنجش‌از دور، شاخص MSAVI روش بسیار مناسبی بوده و در مناطقی که ایستگاه­های هواشناسی به­صورت پراکنده بوده (و یا اصلا وجود ندارد) می­توان از این مدل برای برآورد خشکسالی استفاده کرد. زیرا تعداد نقاط نمونه برداری در تصاویر ماهواره‌ای بسیار بیشتر از تعداد ایستگاه­های هواشناسی است.

کلیدواژه‌ها

عنوان مقاله [English]

Drought Impacts on vegetation cover an emphasis on Remote Sensing (Case Study: Salafchegan – Neizar Watershed)

نویسندگان [English]

  • Vahid Veisi 1
  • Mansoureh Ghavam 2
  • Omolbanin bazrafshan 3

1 Former M.Sc. Student in Combat Desertification, University of Kashan, Iran

2 Assistant Professor, Department of Range and Watershed Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Iran.

3 Assistant Professor, Department of Natural Resources Engineering , Faculty of Agriculture and Natural Resources, University of Hormozgan, Iran

چکیده [English]

     Rangeland vegetation is one of the most important components of arid ecosystems and it is necessary to determine changes in rangeland vegetation under drought and wet years. The present study aimed to investigate the relationship between satellite indices and SPI index in Qom rangelands. For this purpose, the SPI index was calculated in moving averages of 1, 3, 5 and 7 years. In the next step, using Landsat images and after making the necessary adjustments to the images, the vegetation map was prepared using NDVI, MSAVI and EVI indices. Finally, correlation coefficients were used to investigate the relationship between satellite image indices and SPI index. The results showed a moderate and good correlation between MSAVI satellite indices and SPI index at peak vegetation growth months with a one month moving average of SPI index. The results of this study show that to estimate agricultural drought through remote sensing, the MSAVI index is a very suitable method and can be used for estimating drought in areas where meteorological stations are scattered (or nonexistent). Because the number of sampling points in satellite images is far greater than the number of meteorological stations.

کلیدواژه‌ها [English]

  • Drought monitoring
  • Satellite images
  • Vegetation index
  • Landsat images
  • Rangland
-  Ahmadi, J., Akhoondi, L, Abasi, H., Khasheie Siuki, A. and Alimadadi, M., 2013. Determination of aquifer vulnerability using drastic model and applied analysis A single parameter sensitivity and knockout (case study: Plain Salafchegan –Neizar). Journal of Soil and Water Conservation Research, 20(3): 1-25.
-  Allbed, A., Kumar, L. and Aldakheel,Y., 2014. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Journal of Geoderma, 230–231:1–8.
-  Arzani, H., Adnani, S. M. Bashari, H., Azimi M., Bagheri, H., Akbarzadeh, M. and Kaboli S. H., 2006. Monitoring vegetation and production of steppe pastures in Qom during a six-year period. Iranian Journal of Range and Desert Research, 13 (4): 296-313.
-  Arzani, H., Noori, S., Kaboli, S. H., Moradi, H. R. and Ghelichnia, H., 2010. Determination of suitable indices for vegetation cover assessment in summer rangelands in south of mazandaran. Journal of the Iranian Natural Research, 61 (4): 997-1016.
-  Bazrafshan, A., Mahmoodzadeh, F. and Bazrafshan, J., 2016. Evaluation of drought trends based on the standardized precipitation index standardized evapotranspiration in Iran's southern coast. Journal of Desert Management, (8): 69-54.
-  Chena. T, qing Niu, R. Wanga,Y. pei Zhang, L. and Du, B., 2011., Percentage of vegetation cover change monitoring in wuhan region Based on remote sensing. 3rd International Conference on Environmental Science and Information, 10:1466–1472.
-  Dutta, D., Kundu, A., Patel, N. R., Saha, S. K. and Siddiqui, A. R., 2015. Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and standardized precipitation index (SPI). The Egyptian Journal of Remote Sensing and Space Science, 18(1): 53-63.
-  Farajzadeh, M., 2005. Drought from consept to solutions. National Geographical Organization Publication, Tehran, 112p.
-  Fatiha., A., Latifa, A., Mohamed, H. and Spatio, E., 2014. Temporal analysis of vegetation by vegetation indices from multi-dates satellite images: Application to a semi-arid area in Algera. International Conference-Advancements in Renewable Energy and Clean Environment, 667 – 675.
-  Ghaemi, M., Snaei nejad, S. H., Astaraei, A. R. and Mirhoseini, P., 2010 Investigation and comparison of different vegetation indices using ETM+satellite images for vegetation studies in the plain of Neyshabur, Khorasan Razavi. Journal of Field Crops Research, 8: 127-137.
-  Gidey, E., Dikinya, O., Sebego, R., Segosebe, E. and Zenebe, A., 2018. Using drought indices to model the statistical relationships between meteorological and agricultural drought in raya and its environs, Northern Ethiopia. Journal of Earth Systems and Environment, 1-15.
-  Giriraj, A., Ullah, M. I., Murthy, M. R and Beierkuhnlein, C., 2008. Modelling spatial and temporal forest cover change patterns (1973-2020): a case study from South Western Ghats (India). Journal of Sensors, 8: 6132-6153.
-  Huete, A. R., Liu, H., Batchily, K. and Leeuwen, W., 1997. A Comparison of vegetation indices over a global set of TM images for EOS-MODIS. Journal of Remote Sensing of Environment, 59(3):440-451
-  Ichi, K., Kawabata, A. and Yamaguchi, Y., 2002. Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. International Journal of Remote Sensing, 23: 3873-3878.
-  McKee, T. B., Doesken, N. J. and Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17(22): 179-183.
-  Mahini, A.S, Nadali, A., Feghhi, J. and Riazi, B., 2012. Classification of forest areas of Golestan province by maximum likelihood method using ETM + satellite images 2001. Journal of Environmental Science and Technology, 3 (14): 47-56.
-  Nateghi, S., Nohegar, A. and Ehsani. A. and Bazrafshan, O., 2016. Coastal deserts Land use change detection using vector analysis during the years 2001 to 2014 (Case study: Qeshm Island). Iranian Journal of Range and Desert Research, 23 (2): 404-416.
-  Nateghi, S., Nohegar, A., Ehsani, A. and Bazrafshan, O., 2017. Evaluating the vegetation changes upon vegetation index by using remote sensing, Iranian Journal of Range and Desert research, 24(4): 778-790.
-  Rezaei Banafsheh, M., Rezaee, A. and Faridpur, M., 2015. Analysis of agricultural drought indices province with an emphasis on remote sensing and vegetation. Journal of Soil and Water Science, 25 (1): 113-123.
-  Tucker, C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation Journal of Remote Sensing Environment, 8(2): 150
-  Villa, P., Mousivand, A. and Bresciani, M., 2014. Aquatic vegetation indices assessment through radiative transfer modeling and linear mixture simulation. International Journal of Applied Earth Observations and Geoinformation, 30: 113-127.
-  Yamani, M. and Mozaiani, A., 2008. Siahkooh level changes and desert vegetation using remote sensing data. Geographical Studies, 64: 1-12.