همکاری با انجمن علمی مدیریت و کنترل مناطق بیابانی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی کشاورزی و منابع طبیعی، دانشکده علوم، مجتمع آموزش عالی گناباد، ایران.

2 استادیار گروه مهندسی کشاورزی و منابع طبیعی، دانشکده علوم، مجتمع آموزش عالی گناباد، ایران

چکیده

با توجه به محدودیت­هایی که در اندازه­گیری میدانی پوشش گیاهی وجود دارد؛ کاربرد شاخص­های گیاهی جهت برآورد بیوماس عرصه­های مرتعی با استفاده از داده­های ماهواره­ای در مطالعات مرتع می­تواند بسیار کاربردی باشد. در این راستا، لازم است شاخص­های گیاهی مناسب شناسایی گردند. هدف از این پژوهش بررسی امکان برآورد بیوماس مراتع با استفاده از شاخص­های گیاهی حاصل از اطلاعات رقومی ماهواره لندست 8 و تعیین مناسب­ترین آنها در مناطق نیمه خشک شمال شرق کشور می­باشد. برای این منظور مقادیر متوسط شاخص­های گیاهی NDVI، TDVI، SAVI، ARVI، EVI، OSAVI، IPVI، GRVI و GNDVI درون هر واحد یک هکتاری از شبکه حوضه مورد مطالعه، محاسبه گردید. سپس، همبستگی این مقادیر با متوسط مقادیر اندازه­گیری شده میدانی این واحدها از طریق رگرسیون خطی مورد بررسی قرار گرفت و مدل رگرسیونی هر شاخص جهت برآرود بیوماس مشخص گردید. در نهایت، نتایج حاصل مورد اعتبارسنجی قرار گرفت و نقشه بیوماس عرصه برای هر شاخص تهیه شد. نتایج نشان داد تمامی شاخص­ها از همبستگی بالا و قابل قبولی با داده­های واقعی بیوماس برخوردار بودند. بر اساس نتایج اعتبارسنجی، شاخص گیاهی SAVI با ضریب تبیین 79/0 و مقدار ریشه میانگین مربعات خطای 73/14 درصد مناسب­ترین شاخص گیاهی جهت برآورد بیوماس در منطقه بود. این شاخص­ها با بکارگیری طول موج­های قرار گرفته در محدوده باند آبی، اثر ریزگردها را در محاسبات اصلاح نموده که باعث کاهش اثر اتمسفری شده و بهبود نتایج محاسبه شاخص NDVI را در پی دارد و می­توان آن را شاخص NDVI اصلاح شده نیز نامید. بر اساس نتایج بدست آمده، شاخص­های گیاهی که از نسبت­گیری باندهای مادون قرمز نزدیک و قرمز مرئی حاصل می­شوند، همبستگی بالایی با بیوماس دارند. به­طور کلی هرچه شاخص­های گیاهی از باندهای با طول موج کوتاه­تر استفاده کنند، در مناطق خشک و نیمه خشک که بیشتر تحت تأثیر ریزگردها می­باشند، دقت برآوردها کاهش می­یابد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation possibility of rangelands biomass estimation using Landsat 8 satellite data

نویسندگان [English]

  • Masoud Eshghizadeh 1
  • Yaser Esmaeilian 2

1 Assistant professor, Department of Agricultural and Natural Resources, Faculty of Science, University of Gonabad, Iran

2 Assistant Professor, Department of Agricultural and Natural Resources, Faculty of Science, University, University of Gonabad, Iran

چکیده [English]

Due to the limitations of field measurements of vegetation, the application of plant indexes to estimate rangeland biomass using satellite data can be very useful in rangeland studies. For this purpose, it is necessary to identify appropriate vegetation indices. The aim of this study is to investigate the possibility of estimating rangeland biomass using plant indices obtained from digital data of Landsat 8 satellite and determining the most appropriate ones in semi-arid regions of the northeast of the country. For this purpose, the average values of plant indices NDVI, TDVI, SAVI, ARVI, EVI, OSAVI, IPVI, GRVI, and GNDVI within each unit of one hectare of the studied basin network were calculated. Then, the correlation of these values with the average measured field values of these units was examined by linear regression, and the regression model of each index was determined to estimate biomass. Finally, the results were validated and a field biomass map was prepared for each index. The results showed that all indexes had a high and acceptable correlation with real biomass data. Based on the validation results, the SAVI plant index with a coefficient 0.79 and root-mean-square error of 14.73% was the most suitable plant index for estimating biomass in the region. By using the wavelengths located in the blue band, these indicators modify the effect of dust in the calculations, which reduces the atmospheric effect and improves the results of calculating the NDVI index, and it can be called the modified NDVI index. According to the results, plant indices obtained from the ratio of near and visible infrared bands are highly correlated with biomass. In general, the shorter the wavelengths used by plant indices, the lower the accuracy of estimates in arid and semi-arid regions.

کلیدواژه‌ها [English]

  • biomass Landsat Remote Sensing vegetation index
-  Akkartal, A., Türüdü, O. and Erbek, F. S., 2004. Analysis of changes in vegetation biomass using multitemporal and multisensory satellite data. XXth ISPRS Congress, Istanbul, Turkey.
-  Amiri, F., Rashid, A. and Shariff, M., 2010. Using remote sensing data for vegetation cover assessment in semi-arid rangeland of center province of Iran. World Applied Sciences Journal, 11(12): 1537-1546.
-  Ariza, A., Irizar, M. R. and Bayer, S., 2018. Empirical line model for the atmospheric correction of sentinel-2A MSI images in the Caribbean Islands. European Journal of Remote Sensing, 51(1): 765–776.
-  Arzani, H., Hoseini, S. Z. and Mirakhorlou, K., 2014. Application of Landsat ETM+ images for estimating vegetation production and cover in Taleghan rangelands. Iranian Journal of Range and Desert Research, 21(1): 24-31.
-  Bannari, A., Asalhi, H., Teillet, P. M., 2002. Transformed difference vegetation index (TDVI) for vegetation cover mapping. International Geoscience and Remote Sensing Symposium. Canada, 24-28 June: 3053-3055.
-  Crippen, R. E., 1990. Calculating the vegetation index faster. Journal of Remote Sensing of Environment, 34:71-73.
-  Eshghizadeh, M., 2012. Plan review of Kakhk paired catchment, Forests, Range and Watershed Management Organization of Iran. Gonabad.
-  Eshghizadeh, M., Talebi, A. and Dastorani, M. T., 2018. A modified LAPSUS model to enhance the effective rainfall estimation by SCS-CN method. Journal of Water Resources Management, 32(10): 3473-3487.
-  Eshghizadeh, M., Talebi, A., Dastorani, M. T. and Azimzadeh, H. R., 2016. Effect of natural land covers on runoff and soil loss at the hill-slope scale. Global Journal of Environmental Science and Management, 2(2): 125-134.
-  Gitelson, A. A., 2004. Wide dynamic range vegetation index for remote quantification of crop biophysical characteristics. Journal of Plant Physiology, 161: 165-173.
-  Ghorbani, A., Pournemati, A. and Panahande, M., 2017. Estimating and mapping Sabalan rangelands aboveground phytomass using Landsat 8 images. Iranian Journal of Range and Desert Research, 24(1): 165-180.
-  Hangs, R. D., Van Rees, J., Schoenau, K. C. J. and Guo, X., 2011. A simple technique for estimating above-ground biomass in short-rotation willow plantations. Journal of Biomass and Bioenergy, 35: 2156-2162.
-  Hansen, P. M. and Schjoerring, J. K., 2003. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Journal of Remote Sensing of Environment, 86: 542-553.
-  Huete, A. R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25: 295-309.
-  Huete, A. R., Justice, C. and Van Leeuwen, W., 1999. MODIS Vegetation Index (MOD13) Algorithm Theoretical Basis Document, NASA Goddard Space Flight Center.
-  Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Journal of Remote Sensing of Environment, 83: 195-213.
-  Imani, J., Ebrahimi, A., Gholinejad, B. and Tahmasebi, P., 2018. Comparison of NDVI and SAVI in three plant communities with different sampling intensity (Case study: Choghakhour Lake rangelands in Charmahal & Bakhtiri). Iranian Journal of Range and Desert Research, 25(1): 152-169.
-  Jackson, R. D., Slater, P. N. and Pinter, P. J., 1983. Discrimination of growth and turbid atmospheres. Journal of Remote Sensing of Environment, 13: 187-208.
-  Kaufman, Y. J. and Tanre, D., 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30: 261-270.
-  Karnieli, A., Kaufman, Y. J., Rmer, L. and Wald, A., 2001. AFRI, aerosol free vegetation index. Journal of Remote Sensing of Environment, 77: 10-21.
-  Long, Y., Zhou, L., Liu, W. and Hua-Kun, Z., 2010. Using remote sensing and GIS technology to estimate grass yield and livestock carrying capacity of Alpine grasslands in Golog Prefecture China. Journal of Pedosphere, 20(3): 342-351.
-  Pflug, B., Main-Knorn, M., Makarau, A. and Richter, R., 2015. Validation of aerosol estimation in atmospheric correction algorithm ATCOR. ISPRS–International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 677–683.
-  Olexa, E. M. and Lawrence, R. L., 2014. Performance and effects of land cover type on synthetic surface reflectance data and NDVI estimates for assessment and monitoring of semi-arid rangeland. International Journal of Applied Earth Observation and Geoinformation, 30: 30-31.
-  Pordel, F., Ebrahimi, A. and Azizi, Z., 2017. Simulation of green canopy of Marjan pasture during growing season by spectral parameters of OLI sensor. Journal of Geomatics Science and Technology, 4: 191-203.
-  Rondeaux, G., Steven, M. and Baret, F., 1996. Optimization of soil adjusted vegetation indices. Journal of Remote Sensing of Environment, 55:95-107.
-  Rouse, J. W., Haas, R. H., Schell, J. A. and Deering, D. W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. Abstracts of the 3th Earth Resources Technology Satellite-1 Symposium. Washington DC: 309-317.
-  Soleymani, K., Tamartash, R., Alavi, F. and Lotfi, S., 2007. Utility of remote sensing data in estimation of rangeland production. Case study: Sefidab Sub-basin of the Lar Dam. Journal of Science and Technology of Agriculture and Natural Resources, 11(40): 425-437.
-  Song, X., 2004. Early detection system of drought in East Asia using NDVI from NOAA/AVHRR data. International Journal of Remote Sensing, 25(16): 3105-3111.
-  Sripada, R. P., Heiniger, R. W. White, J. G. and Meijer, A. D., 2006. Aerial color infrared photography for determining early-season nitrogen requirements in corn. Agronomy Journal, 98: 968-977.
-  Ustuner, M., Sanli, F. B., Abdikan, S., Esetlili, M. T. and Kurucu, Y., 2014. Crop type classification using vegetation indices of RapidEye imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7: 195–198.
-  Wagle, P., Xiao, X. M., Torn, M. S., Cook, D. R., Matamala, R., Fischer, M. L., Jin, C., Dong, J. and Biradar, C., 2014. Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought. Journal of Remote Sensing of Environment, 152: 1-14.
-  Xiaoping, W., Kai, G. N. and Jing, W., 2011. Hyper spectral Remote Sensing estimation models of aboveground biomass in Gannan rangelands Procedia. Journal of Environmental Sciences, 10: 697-702.
-  Xie, Y., Sha, Z., Yu, M., Bai, Y. and Zhang, L., 2009. A comparison of two models with Landsat data for estimating aboveground grassland biomass in Inner Mongolia, China. Journal of Ecological Modelling, 220: 1810-1818.
-  Yeganeh, H., Khajeddin S. J. and Soffianian, A. R., 2008. Evaluating the potentials of spectral indices of the MODIS in estimating the plant production in Semirom pastures. Journal of Rangeland, 2(1): 63-77.
Zarineh, E., Asadi Brojeni, E. and Khorasgani, M. N., 2012. Estimation range production with using satellite data IRS LISS III (Case study of the Tang Sayyad, Chaharmahal and Bakhtiari). Journal of Iranian Remote Sensing and GIS, 3(4): 63-80.