همکاری با انجمن علمی مدیریت و کنترل مناطق بیابانی ایران

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار مرکز پژوهشی علوم جغرافیا و مطالعات اجتماعی، دانشگاه حکیم سبزواری، ایران

چکیده

حوزه آبخیز سیستان به­علت خشک شدن دریاچه هامون و خشکسالی­های متوالی در چند سال اخیر سبب وقوع طوفان­های شدید گرد و غبار در منطقه شده است. این تحقیق با هدف شناسایی و تعیین خصوصیات مناطق برداشت گرد و غبار (کاربری اراضی، لیتولوژی، شیب و ژئومرفولوژی) در حوزه­ آبخیز سیستان می­باشد. برای شناسایی کانون­های برداشت گرد و غبار از تصاویر ماهواره­ای MODIS روزهای گرد و غباری برای بازه زمانی 2015 تا 2019 با استفاده از شاخص­های بارزسازی گرد و غبار شامل BTD3132، BTD2931، NDDI و D استفاده گردید. نتایج شناسایی کانون­های برداشت گرد و غبار حکایت از آن دارد که در مجموع 211 کانون برداشت گرد و غبار در کل منطقه شناسایی شد. از این تعداد کانون برداشت گرد و غبار شناسایی شده 61 کانون در ایران و 150 کانون در افغانستان قرار دارد. نتایج پراکنش کانون­های برداشت گرد و غبار در کاربری­های مختلف بیان کننده آن است که در اراضی کشاورزی دیم با تعداد 172 کانون و سطوح خشک شده دریاچه و اراضی کشاورزی آبی با هریک 16 و 12 کانون، بعد از اراضی کشاورزی دیم بیشترین کانون برداشت گرد و غبار را دارند. از همپوشانی نقشه لیتولوژی و کانون­های گرد و غبار این نتایج حاصل شد که بیشترین کانون برداشت گرد و غبار به‌ترتیب با 111 و 98 کانون در سازندهای رسوبی پیوسته و ناپیوسته قرار دارد. نتایج پراکنش کانون­های برداشت گرد و غبار در واحدهای ژئومرفولوژی بیان کننده آن است که واحد دشت‌سر فرسایشی با درصد مساحت 69/35، 48 کانون برداشت گرد و غبار بیشترین کانون برداشت را در خود جای داده است. همچنین نتایج پراکنش کانون­های برداشت گرد و غبار در شیب­های مختلف نشان‌دهنده آن است که بیشترین و کمترین کانون برداشت گرد و غبار به‌ترتیب در شیب­های 0 تا 2 و بیشتر از 32 درصد با تعداد 107 و 6 کانون قرار دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Identification of dust source area in Sistan basin and determination of their characteristics

نویسنده [English]

  • Mahdi Boroughani

Assistant Professor of Research Center for Geoscience and Social Studies, Hakim Sabzevari University, Iran

چکیده [English]

     Sistan watershed has caused severe dust storms in the region in recent years due to the drying up of Lake Hamoon and consecutive droughts. This study aimed to identify and determine the characteristics of dust source areas (land use, lithology, slope, and geomorphology) in the Sistan watershed. To identify the dust source area, MODIS satellite images of dust days for the period 2015 to 2019 were used using dust detection indicators including BTD3132, BTD2931, NDDI, and D. The results of identifying dust source area indicate that a total of 211 dust source areas were identified in the whole region. Of these identified dust source area, 61 are in Iran and 150 in Afghanistan. The results of the distribution of dust collection centers in different uses indicate that dryland agricultural lands with 172 centers, dried lake surfaces, and irrigated agricultural lands with 16 and 12 sources have the highest dust collection sources. From the overlap of the lithology map and dust source, it was obtained that the most dust source area with 111 and 98 sources, respectively, are located in continuous and discontinuous sedimentary formations. The results of the distribution of dust source area in geomorphological units indicate that the erosion plain unit with an area of 35.69 percent, 48 dust source area has the highest collection source. Also, the results of the distribution of dust source area in different slopes show that the highest dust source area is in the slopes of 0 to 2% with 107 sources and the lowest located in more slopes of 32%% with 6 sources.

کلیدواژه‌ها [English]

  • Dust source
  • Sistan Basin
  • Land Use
  • Geomorphology
-  Ackerman, S. A. 1997. Remote sensing aerosols using satellite infrared observations. Journal of Geophysical Research, 102: 17069–17080.
-  Alizadeh Choobari, O., Zawar-Reza, P. and Sturman, A., 2014. The global distribution of mineral dust and its impacts on the climate system: A review. Journal of Atmospheric Research, 138(1): 152-165.
-  Baddock, M.C., Gill, T. E., Bullard, J., Acosta, M. and Rivera Rivera, N.I., 2011. Geomorphology of the Chihuahuan Desert based on potential dust emissions. Journal of Maps, 7(1): 249–259.
-  Benincasa, F., 2012. Available from http://sds-was.aemet.es/forecast-products/dust-observations/msg-2013-eumetsat. Accessed 12th Feb 2015.
-  Boroughani, M., Pourhashemi, S., Zangane Asadi, M. A. and Moradi, H., 2017. Dust source identification in the middle east by using remote sensing. Natural hazards environment magazine, 66 (11): 101-118.
-  Boroughani, M., Pourhashemi, S., Zarei, M.and Aliabadi, K., 2019. Spatial modeling of sensitivity of dust source area to its release in Eastern Iran using the BRT enhanced tree Model. Journal of Arid Regions, 9(35): 14-28.
-  Boroughani, M., Pourhashemi, S., Hashemi, H., Salehi, M., Amirahmadi, A., Zangane Asadi, M.A. and Berndtsson, R. 2020. Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping. Ecological Informatics, 56 (2020): 1-14.
-  Cao, H., Amiraslani, F., Liu, J. and Zhou, N., 2015. Identification of dust storm source areas in West Asia using multiple environmental datasets. Journal of Science of the Total Environment, 502: 224-235.
-  Crouvi, O., Schepanski, K., Amit, R., Gillespie, A.R. and Enzel, Y., 2012. Multiple dust sources in the Sahara Desert: the importance of sand dunes. Geophysical Research Letters, 39, L13401.
-  Crusius, J., Schroth, A.W., Gassó, S.C., Moy, M.R., Levy, C. and Gatica, M., 2011. Glacial flour dust storms in the Gulf of Alaska: Hydrologic and meteorological controls and their importance as a source of bioavailable iron. Geophysical Research Letters, 38, L06602.
-  Dargahian, F., Lotfinasabasl, S. and Razavizadeh, S., 2019. Factors affecting on the event of sandstorms and dust in Zabul with emphasis on the role of low pressure of Pakistan, Case Study July 2016. Iranian Journal of Range and Desert Research, 26 (4): 868-886.
-  Dubovik, O., Lapyonok, T., Kaufman, Y.J., Chin, M., Ginoux, P. and Kahn, R.A., 2008. Retrieving global sources from satellites using inverse modeling. Journal of Atmospheric Chemical Physics, 8(2): 209-250.
-  Eklund, L., Degerald. M., Brandt, M., Prishchepov, A.V. and Pilesjo, P., 2017. How conflict affects land use: agricultural activity in areas seized by the Islamic State. Environmental Research Letters, 12:054004.
-  Ellis, E., 2010. Land-use and land-cover change. In: Cleveland, C.J. (Ed.) Encyclopedi of Earth. <http://www.eoearth.org/article/Land-use_and_land-cover_change>.
-  Gholampour, A., Nabizadeh, R., Hassanvand, M.S., Nazmara, S. and Mahvi, A.H., 2017. Elemental composition of particulate matters around Urmia Lake, Iran. Toxicol. Environmental Chemistry, 99 (1), 17–31.
-  Ginoux, P. and Torres, O., 2003. Empirical TOMS index for dust aerosol: Applications to model validation and source characterization. Journal of Geophysic Reseach, 108(D17): 4534, doi:10.1029/2003JD003470.
-  Ginoux, P., Garbuzov, D., Hsu, C., 2010. Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data. Journal of geophysical research, 115: 1-10.
-  Hahnenberger, M., Kathleen, N., 2014. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A. Journal of Geomorphology, 204(2): 657-672.
-  Hao, X., Qu, J.J., Hauss, B. and Wang, C., 2007. A high-performance approach for brightness temperature inversion. International Journal of Remote Sensing, 28(21): 4733-4743.
-  Hsu, N.C., Tsay, S.C., King, M.D. and Herman, J.R., 2004. Aerosol properties over bright-reflecting source regions. IEEE Trans Geoscience Remote Sensing, 42: 557–569.
-  Jafari, M., Zehtabian, G. H., Ahmadi, H., Mesbahzadeh, T. and Noroozi, A. A., 2018. Detection of dust storm paths using numerical models and satellite images (Case study: Isfahan province). Iranian Journal of Range and Desert Research, 26 (1): 29-39.
-  Jalali, N., Iranmanesh, F. and Davodi, M. H., 2017. Identification of source and areas affected by dust storms in southwestern Iran using MODIS images. Journal of Watershed Engineering and Management, 9(3): 318-331.  
-  Karimi, k., Shahraeni, H., NowKhandan, M. and Hafezi Moghadas, N., 2011. Dust source identification in Middle East with used remote sensing. Journal of Climatology Research, 7(2): 57-72.
-  Kherandish, Z., Jamali, J. and Reygani, B., 2018. Identify the best dust detection algorithm using MODIS data. Journal of Natural Hazards, 7(15): 205-218.
-  Lee, J., Gill, T., Mulligan, K., Acosta, M.D. and Perez, A., 2009. Land use/land cover and point sources of the 15 December 2003 dust storm in southwestern North America. Journal of Geomorphology, 105(2): 18-27.
-  Lee, J., Baddock, M., Mbuh, M. and Gill, T., 2012. Geomorphic and land cover characteristics of aeolian dust sources in West Texas and eastern New Mexico, USA. Journal of Aeolian Research, 3(4): 459-466. 
-  Li, J., Kandakji, T., Lee, J., Tatarko, J., Blackwell, J., Gill, T. and Collins, J., 2018. Blowing dust and highway safety in the southwestern United States: Characteristics of dust emission “hotspots” and management implications. Science of the Total Environment, 621: 1023–1032.
-  Miller, M. E., Bowker, M. A., Reynolds, R. L. and Goldstein, H. L., 2012. Post-fire land treatments and wind erosion lessons from the Milford Flat Fire, UT, USA. Journal of Aeolian Research, 7(4): 29–44.
-  Moridnejad, A., Karimi, N. and Ariya, P., 2015. Newly desertified regions in Iraq and its surrounding areas: significant novel sources of global dust particles. Journal of Arid Environ. 116, 1–10.
-  Parajuli, S.p. and Zender, C., 2017. Connecting geomorphology to dust emission through high-resolution mapping of global land cover and sediment supply. Journal of Aeolian Research, 27: 47–65.
-  Pourghasemi, H. R. and Kerle, N., 2016. Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environmental Earth Sciences, 75(3): 185. Link: https:// doi: 10.1007/s12665-015-4950-1.
-  Pourhashemi, S., Boroughani, M., Amirahmadi, A., Zanganeh Asadi, M. A. and Salhi, M., 2019. Prioritizing dust harvesting areas using statistical models (Case Study: Khorasan Razavi). Rangeland and Watershed Management, 72(2): 343-358.
-  Qu, J., Hao, X.J., Kafatos, M. and Wang, L., 2006. Asian dust storm monitoring combining Terra and Aqua MODIS SRB Measurements. IEEE Geoscience and Remote Sensing Letters, 3(4): 484-486.
-  Ranjbar, H., Bazgir, M., Namdar Khojasteh, D. and Rostami Nia, M., 2019. Identification of dust sources in Ilam province. Iranian Journal of Range and Desert Research, 26 (3): 665-688.
-  Rashki, A., Kaskaoutis, D. G., Rautenbach, C., Eriksson, P. G., Qiang, M. and Gupta, P., 2012. Dust storms and their horizontal dust loading in the Sistan region, Iran. Journal of Aeolian Research, 5(3): 51-62.
-  Rashki, A., Kaskaoutis, D. G., Francois, P., Kosmopoulos, P. G. and Legrand, M., 2015. Dust-storm dynamics over Sistan region, Iran: Seasonality, transport characteristics and affected areas. Journal of Aeolian Research, 16: 35-48.
-  Raspanti, G.A., Hashibe, M., Siwakoti, B., Wei, M., Thakur, B.K., Pun, C.B., Al-Temimi, M., Lee, Y.C. and Sapkota, A., 2016. Household air pollution and lung cancer risk among never-smokers in Nepal. Environmental Research, 141-145. doi: 10.1016/j.envres.2016.02.008. Epub 2016 Feb 11.
-  Reheis, M. C. and Kihl, R., 1995. Dust deposition in southern Nevada and California, 1984 – 1989: Relations to climate, source area and source lithology, Journal of Geophysical Research, 100(D5): 8893– 8918.
-  Rivera Rivera, N.I., Gill, T.E., Bleiweiss, M.P. and Hand, J.L., 2010. Source characteristics of hazardous Chihuahuan Desert dust outbreaks. Journal of Atmospheric Environmental, 44: 2457–2468.
-  Rokni, J., Hosseinzadeh, S. R., Lashkari Pour, G.H. and Velayati, S., 2017. An overview of the geomorphology of northeast Iran with a view to the challenge of water crisis in the plains of this region. 5th National Conference on Geomorphology and Environmental Challenges. 1-5.
-  Roscovensky, J.K. and Liou, K.N., 2005. Differentiating airborne dust from cirrus clouds using MODIS data. Geophysical Research Letters, 32, L12809. Doi: 10. 1029/2005GL022798.
-  Sissakian, V., Al-Ansari, N. and Knutsson, S., 2013. Sand and dust storm events in Iraq. Journal of Natural Science, 5(10): 1084-1094.
-  Soltani, N., Keshavarzi, B., Sorooshian, A., Moore, F., Dunster, C., Dominguez, A. O., Kelly, F. J., Dhakal, P., Ahmadi, M. R. and Asadi, S., 2017. Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). Environmental Geochemical Health, doi:10.1007/s10653-017-9926-5.
-  Vickery, K. and Eckardt, F., 2013. Dust emission controls on the lower Kuiseb River valley, Central Namib. Journal of Aeolian Research, 10(3): 125-133.
-  Walker, A. L., Liu, M., Miller, S.D., Richardson, K.A. and Westphal, D.L., 2009. Development of a dust source database for mesoscale forecasting in Southwest Asia. Journal of Geophysical Research, 114(18): 1-24.
-  Wang, H. and Niu, T., 2013. Sensitivity studies of aerosol data assimilation and direct radiative feedbacks in modeling dust aerosols. Journal of Atmospheric Environment, 64(1): 208–218.
-  Wang, X., Zhou, Z. and Dong, Z., 2006. Control of dust emissions by geomorphic conditions, wind environments and land use in northern China: an examination based on dust storm frequency from 1960 to 2003. Geomorphology, 81: 292–308.
-  Warren, A., Chappell, A., Todd, M.C., Bristow, C., Drake, N., Engelstaedter, S., Martins, V., M'bainayel, S. and Washington, R., 2007. Dust-raising in the dustiest place on earth. Geomorphology, 92: 25–37.
-  Zobeck, T., Baddock, M., Pelt, R., Tatarko, J. and Acosts-Martinez, V., 2013. Soil property effects on wind erosion of organic soils. Aeolian Research, 10: 43-51.