همکاری با انجمن علمی مدیریت و کنترل مناطق بیابانی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه خاکشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران

3 استاد گروه خاکشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

4 دانشیار ، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی تهران، ایران

چکیده

آلودگی خاک­ توسط آلاینده­های هیدروکربنی نفتی یکی از مهمترین مشکلات زیست محیطی در مناطق مختلف جهان است. در مناطق نفت­خیز غرب کشور و در طی سالیان اخیر، استهلاک سامانه استخراج و بهره­برداری از مخازن نفتی منجر به نشت یا نهشت آلاینده­های نفتی در خاک و منابع زیستی منطقه شده است. هدف این پژوهش بررسی قابلیت کاربرد گیاهان مرتعی بومی و افزودن باکتری­ها و مقدار کود مناسب در کاهش آلودگی هیدروکربن­های نفتی کل (TPHs) خاک بوده است. آزمایش گلدانی در قالب طرح فاکتوریل با طرح پایه کاملا تصادفی (CRD) با چهار تکرار انجام شد. تیمارهای گیاهی شامل سه گیاه بومی یا سازگار مرتعی یونجه وحشی، آگروپایرون و آتریپلکس و تیمارهای باکتری شامل گونه­های باکتری Bacillus pumilus (B1Pseudomonas putida (B2) و استفاده توأم این دو باکتری با توصیه کودی متناسب با آزمون خاک بود. همچنین تیمار شاهد (بدون کشت گیاه، بدون تلقیح باکتری و بدون کوددهی) اعمال شد. نتایج نشان داد که یونجه وحشی با کاهش 16/55 درصدی TPHs خاک کارایی بهتری نسبت به سایر گیاهان داشت. تلقیح باکتری B1 در برهم‌کنش با دو گیاه یونجه وحشی و آگروپایرون، با تجزیه 19/56 درصد TPHs خاک موفق­تر از باکتری B2 عمل کرد. اما در گیاه آتریپلکس در برهم‌کنش با باکتریB2  و با تجزیه 64/54 درصد TPHs خاک موفق­تر از B1 بود. با توصیه کامل کودی، گیاهان یونجه وحشی و آتریپلکس با کاهش 56/68 درصدی TPHs خاک بیشترین کارایی را داشتند. در تیمار خاک بدون کشت گیاه، باکتری B2 همراه با توصیه کودی بهترین عملکرد را داشت. باکتری با بهبود فعالیت­های متابولیک و توسعه سیستم ریشه و در نهایت افزایش زیتوده گیاه منجر به بهبود کارایی گیاه پالایی می­شود. نتایج نشان از اثر معنی­دار برهم‌کنش بین باکتری و نوع گیاه در وزن خشک اندام هوایی گیاه در سطح  01/0 α= بود.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of simultaneous application of fertilization operations and use of native rangeland plants and bacteria in the removal of petroleum pollution from soil

نویسندگان [English]

  • Ronak Shirzadian Gilan 1
  • yahya parvizi 2
  • Ebrahim Pazira 3
  • Farhad Rejali 4

1 Ph.D Student, Department of Soil Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Associate professor, Department of Soil Conservation and Watershed Management, Agricultural and Natural Resources Research Center of Kermanshah, AREEO, Kermanshah, Iran

3 Professor, Department of Soil Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

4 Associate Professor, Associate professor, Soil and Water Research Institute, AREEO, Tehran, Iran

چکیده [English]

Soil pollution by petroleum hydrocarbon pollutants is one of the most important environmental problems in different parts of the world. In the oil-rich regions of the west of the country and recent years, the depreciation of the oil extraction and exploitation system has led to leakage and distribution of oil pollutants in the soil and biological resources of the region. This study aimed to investigate the potential use of native rangeland plants and the addition of bacteria, and the amount of appropriate fertilizer to reduce pollution of total petroleum hydrocarbons (TPHs) in the soil. The pot experiment was performed in the form of a factorial design with a completely randomized design (CRD) with four replications. Plant treatments included three native or compatible plants of Medicago sativaAgropyron trichophorum, and Atriplex canescens and bacterial treatments included Bacillus pumilus (B1), Pseudomonas putida (B2), and the combined use of these two bacteria with fertilizer recommendation based on soil testing. Also, control treatment (no plant culture, no bacterial inoculation, and no fertilization) was applied. The results showed that Medicago sativa, with a 55.16% reduction in soil TPHs had better performance than other plants. Inoculation of B1 bacterium in interaction with Medicago sativa and Agropyron trichophorum by decomposing 56.19% of soil TPHs was more successful than B2. However, Atriplex canescens was more successful than B1 in interacting with B2 bacteria and decomposing 54.64% of soil TPHs. With full fertilizer recommendation, Medicago sativa and Atriplex canescens plants were most effective, with a 68.56% reduction in soil TPHs. In soil treatment without plant cultivation, B2 bacterium had the best performance along with fertilizer recommendation. Bacteria improve phytoremediation efficiency by improving metabolic activities and developing the root system, and ultimately increasing plant biomass. The results showed a significant effect of interaction between bacteria and plant type on plant shoot dry weight at the level of α = 0.01.

کلیدواژه‌ها [English]

  • Medicago sativa
  • Agropyron trichophorum
  • Atriplex canescens
  • Bacillus pumilus
  • TPHs
  • Ultrasonic
  • Alves, W. S., Manoel, E. A., Santos, N. S., Nunes, R. O., Domiciano, G. C. and Soares, M. R., 2018. Phytoremediation of polycyclic aromatic hydrocarbons (PAH) by cv. Crioula: A Brazilian alfalfa cultivar. International Journal of Phytoremediation, 20:747-755.
  • Anigboro, A. and Tonukari, N., 2008. Effect of crude oil on invertase and amylase activities in cassava leaf extract and germinating cowpea seedlings. Asian Journal of Biological Sciences, 1: 56-60.
  • Chouychai, W., Thongkukiatkul, A., Upatham, S., Pokethitiyook, P., Kruatrachue M. and Lee, H., 2012. Effect of corn plant on survival and phenanthrene degradation capacity of pseudomonas sp. UG14Lr in Two Soils, International Journal of Phytoremediation, 14(6): 585-595. 
  • Chupakhina, G. N. and Maslennikov, P. V., 2004. Plant adaptation to oil stress. Russian Journal of Ecology, 35:290-295. Translated from Ekologiya; 330-335.
  • Dai, C., Hu, Y., Liu, X., Wen, J. and Zhong, C., 2011. Multi-system phytoremediation on oil-contaminated chernozem soilin daqing oilfield. The 1st International Conference on Environmental and Agriculture Engineering, Chengdu, China.
  • Dasanna, A. "How to make Alfalfa sprouts".2016. Vegetarian recipes of India, Retrieved 25 October.
  • D’Orazio, V., Ghanem, A. and Senesi, N., 2013. Phytoremediation of pyrene contaminated soils by different plant species. CLEAN - Soil, Air, Water, 41(4):377-382.
  • Gee, G.W. and Bauder, J.W., 1990. Particle size analisis. P. 383-411. In: A. Klute (ed.) Methods of soil analysis. Part 1. Physical and mineralogical properties. Monograph No. 9. 2nd ed. Medison, WI: SSSA.
  • Ghaderi, G. R., Gazanchian, A. and Yousefi, M., 2008. The forage production comparison of alfalfa and wheatgrass as affected by seeding rate on mixed and pure cropping. Iranian journal of Range and Desert Reseach, 15(2): 256-268.
  • Ghorbanian, D., Sharafieh, H., Mozaffari, M., Amirjan, M. and Mirakhorli, R., 2018. Investigating the possibility of the establishment of the two species of the genus Atriplex (Atriplex canescens  and Atriplex verrocifera( and comparing their forage production in saline and low yield soils. Iranian Journal of Range and Desert Research, 25(4): 761-769.
  • Guarino, C., Marziano, M., Tartaglia, M., Prigioniero, A., Postiglione, A., Scarano, P. and Sciarrillo, R., 2020. Poaceae with PGPR bacteria and arbuscular mycorrhizae partnerships as a model system for plant microbiome manipulation for phytoremediation of petroleum hydrocarbons contaminated agricultural soils. Agronomy Journal, https://doi.org/10. 547.10.3390/agronomy10040547.
  • Gouda, A. H., El-Gendy, A. S., Abd El-Razek, T. M. and El-Kassas, H. I., 2017. Evaluation of phytoremediation and bioremediation for sandy soil contaminated with petroleum hydrocarbons. International Journal of Environmental Science and Development, 7: 826-
  • Khan, S., Hesham, AE-L., Qing, G., Shuang, L. and He, J., 2009. Biodegradation of pyrene and catabolic genes in contaminated soils cultivated with Lolium multiflorum Journal of Soils and Sediments, 9(5):482-91.
  • Kord, B., Safikhani, F., Khademi, A. and Pourabbasi, S., 2018. Investigating the role of rangeland plants in remediation of soils contaminated with lead and zinc. Iranian journal of Range and Desert Reseach, 25(1): 78-88.
  • Magdalena, P., Grażyna, A. and Zofia, P., 2016. Monitoring the changes in a bacterial community in petroleum-polluted soil bioaugmented with hydrocarbon-degrading strains. Applied Soil Ecology, 105: 76–85.
  • Glick, B., 2010. Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28(3): 67-74.
  • Liu, S. H., Zeng, G. M., Niu, Q. Y., Liu, Y., Zhou, L., Jiang, L. H., Tan, X. F., Xu, P., Zhang, C. and Cheng, M., 2017. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bioresource Technology, 224:25–33.
  • McLean, E. O., 1982. Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2). 199-224.
  • Mokhtarian, N., Talaie, A. R., Jaafarzadeh, N., Talaie, M. R. and Beheshti, M., 2010. Producing biosurfactants from purified microorganisms obtained from oil-contaminated soil. Journal of Water and Wastewater, 3: 20-27.
  • Nelson, D. W., Sommers, L. E., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H. and Sumner, M. E., 1996. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 3 Chemical Methods. 961-1010.
  • Page, A. L., Miller, R. H. and Keeney, D. R., 1992. Method of Soil Analysis. Part 2 Chemical and Mineralogical Properties. 2nd. SSSA pub., Madison, Wis.
  • Panchenko, L., Muratova, A. and Olga Turkovskaya, O., 2017. Comparison of the phytoremediation potentials of Medicago falcata And Medicago sativa L. in aged oil sludge-contaminated soil. Environmental Science and Pollution Research, 24: 3117–3130.
  • Pawar, A. N., Ugale, S. S., More, M. G., Kokani, M. F. and Khandelwal, S. R., 2013. Biological degradation of naphthalene: A New Era. Journal of Bioremediation and Biodegradation, 4(7): 1-5.
  • Rajaei, S. and Seyedi, S. M., 2018. Phytoremediation of Petroleum-Contaminated Soils by Vetiveria zizanioides (L.) Nash. Clean-Soil, Air and Water, 46 (8): 568-580.
  • Richards, L. A., 1954. Diagnosis and improvement of saline and alkali soils. Soil Science, 78(2): 154.
  • Schwartz, G., Ben-Dor, E. and Eshel, G., 2012. Quantitative analysis of total petroleum hydrocarbons in soils: comparison between reflectance spectroscopy and solvent extraction by 3 certified laboratories. Applied and Environmental Soil Science, DOI: 10.1155/2012/751956.
  • Saraeian, Z., Haghighi, M., Etemadi, N., HajAbbasi, M. A. and Afyuni, M., 2018. Phytoremediation effect and growth responses of Cynodon and Agropyron desertorum in a petroleum-contaminated soil. Soil and Sediment Contamination, An International Journal. 27(5): 393-407.
  • Soleimani, M., Afyuni, M., Hajabbasi, M. A., Nourbakhsh, F., Sabzalian, M. R. and Christen, J. H., 2010. Phytoremediation of on aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere, 81: 1084-1090.
  • Valeria, D., Alaa, G. and Senesi, N., 2013. Phytoremediation of pyrene contaminated soils by different plant species. Clean - Soil, Air, Water, 41 (4): 377–382.
  • Xiao, N., Liu, R., Jin, C. and Dai, Y., 2015. Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecological Engineering., 75: 384–391.
  • Yang, Y., Liu, Y., Li, Z., Wang, Z., Li, C. and Wei, H., 2020. Significance of soil microbe in microbial-assisted phytoremediation: an effective way to enhance phytoremediation of contaminated soil. nternational Journal of Environmental Science and Technology, 17(4): 2477–2484.