بررسی اثر فلز سنگین کادمیم بر خصوصیات فیتوشیمیایی گونه‌ی مرتعی شیرین‌بیان ( Glycyrrhiza glabra L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری مرتعداری، دانشکده منابع طبیعی دانشگاه تهران.

2 دانشیار گروه احیاء مناطق خشک و کوهستانی، دانشکده نمنابع طبیعی دانشگاه تهران.

3 استاد گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی دانشگاه تهران.

4 دانشیار گروه جنگل، دانشکده نمنابع طبیعی دانشگاه تهران.

5 استادیار پژوهشی، بخش تحقیقات بیابان، سازمان تحقیقات، آموزش و ترویج کشاورزی، موسسه تحقیقات جنگل‌ها و مراتع کشور، تهران، ایران

چکیده

اگرچه در خصوص اثر آلودگی بر خصوصیات فیتوشیمیایی گیاهان دارویی که به صورت زراعی کاشت می­شوند مطالعات متعددی صورت گرفته، اما این مهم در ارتباط با گونه های مرتعی، علیرغم اهمیت آن­ها در زمینه ایجاد تنوع معیشتی برای بهره­بردران مرتعی، بسیار محدود بوده است. در همین راستا تحقیق حاضر با هدف بررسی اثر فلز سنگین کادمیم بر خصوصیات فیتوشیمیایی شیرین بیان، در قالب طرح کاملاً تصادفی با تیمار کادمیم در 6 غلظت (صفر، 10، 20، 40، 80 و 160 (ppm)) و 4 تکرار به صورت کشت گلدانی (مجموعاً 24 گلدان) اجرا گردید. پس از تهیه بستر کاشت و اسپری نمودن محلول نمک نیترات کادمیم با غلظت‌های فوق الذکر به خاک، ریزوم‌های شیرین­بیان داخل گلدان‌ها کشت و به مدت 7 ماه در گلخانه تحت مراقبت و آبیاری قرار گرفتند. در نهایت نمونه‌های گیاهی (در دو بخش اندام‌های هوایی وزیرزمینی) تهیه­شده، جهت اندازه‌گیری خصوصیات فیتوشیمیایی به آزمایشگاه منتقل شدند. متغییرهای اندازه‌گیری در اندام زیرزمینی شامل میزان گلیسیریزیک اسید، گلابریدین، لیکوریتجنین و در اندام هوایی فلاونوئیدهای روتین و کتچین بود. عصاره‌گیری با روش اولتراسونیک و اندازه‌گیری با استفاده از کروماتوگرافی مایع با کارایی بالا (HPLC) انجام گرفت. نتایج مقایسه میانگین کادمیم در غلظت‌های تحت بررسی نشان داد افزایش غلظت این عنصر درخاک اثر معنی‌داری بر میزان گلیسریزیک اسید، گلابریدین و لیکوریتجنین در اندام زیرزمینی و فلاونوئیدهای روتین و کتچین در اندام هوایی گیاه شیرین­بیان  داشته است. در همین راستا بیشترین تاثیر افزایشی را گلیسریزیک اسید و لیکوریتجنین در غلظت 10 (ppm)، به ترتیب با 12/70 و 44/56 درصد و گلابریدین در غلظت 20 (ppm) با 70/51 درصد نسبت به شاهد نشان داده است. نتایج همچنین نشان داد میزان مواد موثره در اندام زیرزمینی گیاه شیرین بیان تحت تیمار کادمیم در ابتدا افزایش یافته و در ادامه با بالا رفتن غلظت کادمیم کاهش داشته‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Inestigation of Effect of Cadmium on Phytochemical Properties of Licorice (Glycyrrhiza glabra L.)

نویسندگان [English]

  • Firoozeh Moghiminejad 1
  • Ali Tavili 2
  • Mohammad Jafari 3
  • Mohsen Shirvany 4
  • Yaser Ghasemi Aryan 5
1 PhD student, Faculty of Natural Resources, Tehran University, Karaj, Iran.
2 Associate Professor, Faculty of natural resources, University of Tehran.
3 Professor, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
4 Associate Professor, Faculty of natural resources, University of Tehran, Karaj, Iran.
5 5- Assistant Professor, Desert Research Division, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

The increasing popularity and trade of medicinal plants on the one hand, and the expansion of polluting water, soil and air resources on the other hand, have made the health, safety and quality of medicinal plants raw materials and their processed products a major concern of world organizations. Become more and more diverse and implement various research projects in this field. The present study aimed to investigate the effect of cadmium heavy metal on the phytochemical properties of licorice in a completely randomized design with cadmium treatment at 6 concentrations (0, 10, 20, 40, 80 and 160 (ppm)) and 4 replications. Potted cultivation (24 pots in total) was performed. After planting substrate and spraying cadmium heavy metal nitrate with above mentioned concentrations, licorice rhizomes were cultured in pots and kept in greenhouse for 7 months. Finally, dried and powdered plant samples (in two sections of aerial parts) were transferred to laboratory for measurement of phytochemical properties. The measured variables in the underground organs were glycyrrhizic acid, glabridine, liquoritin and in the aerial parts of routine and catechin flavonoids. Extraction was performed by ultrasonic and solvent methods. The best solvent for extraction of active substances in aerial and ground organs was determined after ethanol: water (70:30) tests and the measurements were performed by high performance liquid chromatography (HPLC). Comparison of mean cadmium concentrations in the studied concentrations showed that increasing the concentration of this element in soil had a significant effect on glycerolic acid, glabridine and liquoritin levels in groundwater and routine flavonoids and catechins in aerial parts of licorice. In this regard, glyceric acid and liquoritin were the most additive effects at concentration of 10 (ppm), 70.12 and 56.44%, and glabridine at concentration of 20 (ppm) at 51.70%, respectively. It also showed that the amount of active substances in licorice underground increased initially with cadmium treatment and then decreased with increasing concentration of heavy metal.

کلیدواژه‌ها [English]

  • Heavy metal
  • Cadmium
  • macronutrients
  • licorice (Glycyrrhiza glabra L.)
  • Aebi, H., 1984. Catalase in vitro.Methods Enzymol, 105: 121–126.
  • Ahmadi Hosseini, M., Sori, M., Farhadi, N. and Omidbeigi, R., 2014. Investigation of Morphological Diversity and Extract of Root Dryness in Different Ecotypes (Glycyrrhiza glabra L.) in Five Provinces of the Country. Iranian Journal of Rangeland Science, 1:1-12.
  • Alhosseini, Z., Jafarian, Z., Roshan, V. and Ranjbar. G.H., 2018. The Effect of water salinity on the quantity and quality of biochemical compounds of medicinal herbs (L officinallis Mellissa). Iranian Journal of Rangeland Science, 3:370-379.
  • Alloway, B.J., 1990. Heavy metals in soils. Blackie and son, ltd. Glasgow and London. 339 pages.
  • Amani, M., Sotudeh-Gharebagh, R., Mostaoufi, N. and Kashani, H., 2005. Optimal exteraction of glycyrrhetinic acid from licorice Root. Journal of Technology, 3 (4): 376 – 580 (In Persian).
  • Asgari lajayer, H., Najafi, N. and Moghise, A., 2015. Effect of soil pollution on heavy metals on the production of medicinal plants. Jornal of Land Manegment, 2:111-122.
  • Baye, H. and Hymete, A., 2010. Lead and cadmium accumulation in medicinal plants collected from environmentally different sites. Bulletin of Environmental Contamination and Toxicology, 84(2): 197-201.
  • Bonanno, G. and Giudice, R.L., 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Journal of Ecological Indicators, 10: 639-645.
  • Chaiyarat, R., Suebsima, R., Putwattana, N., Kruatrachue, M. and Pokethitiyook, P., 2011. Effects of soil amendments on growth and metal uptake by Ocimum gratissimum grown in Cd/Zn-contaminated soil. Water, Air, & Soil Pollution, 214(1-4): 383-392.
  • Clemens, S., 2001. Molecular mechanisms of plant metal tolerance and homeostasis.Journal of Planta, 212: 475-486.
  • Cobbett, C.S., 2000. Phytochelation biosynthesis and function in heavy-metal detoxification: Current opinion. Journal of Plant Biology, 3: 211-216.
  • Diaconu, D., Diaconu, R. and Navrotescu, T., 2012. Estimation of heavy metals in medicinal plants and their infusions. Analele Universitatii" Ovidius" Constanta-Seria Chimie, 23(1):115-120.
  • Diaz, J., Bernal, A., Pomar, F. and Merino, F., 2001. Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci. 161:179.
  • Dinakar, N., Nagajyothi, P.C., Udaykiran, Y. and Damodharam, T., 2008. Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea seedlings, Journal of Environment Science, 20: 199-206.
  • Dixon, R.A. and Paiva, N.L., 1995. Stress-induced phenylpropanoid metabolism. Plant Cel1. 7: 1085–1097.
  • Dyani, L. and Raeisi, F., 2006. Activity of phosphatase and urease enzymes in a soil contaminated with cadmium. Proceedings of Soil, Environment and Sustainable Development Conference, 113-114.
  • Ebrahim, A.M., Eltayeb, M.H., Khalid, H, Mohamed, H., Abdalla, W., Grill, P. and Michalke, B., 2012. Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. Journal of Natural Medicines, 66 (4): 671-679.
  • Ernst, W.H.O., Verkleij, J.A.C. and Schat, H., 1992. Metal tolerance in plants. Acta Botanica Neerlandica Journal, 41: 229-248.
  • Gjorgieva, D., Kadifkova-Panovska, T., Bačeva, K. and Stafilov, T., 2010. Content of toxic and essential metals in medicinal herbs growing in pollutedand unpolluted areas of Macedonia. Archives of Industrial Hygiene and Toxicology, 61 (3): 297-303.
  • Hernandez, L.E., Garate, A. and Carpena-Ruiz, R., 1997. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant Soil, 189: 97-106.
  • Hosseinpour, M. and Afshari, H., 2015. Evaluation of different levels of cadmium and lead on some phytochemical properties in salinity (Ocimum basilicum L.).IranianJournal of Eco – phytochemical Journal of Medicinal plants. 50-64.
  • Jung, C.H., Maeder, V., Funk, F. and Frey, B., 2003. Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Journal of Plant and Soil, 252: 301-316.
  • Kabata, A. and Pendias, H., 2011. Trace Metals in Soils and Plants, CRC Press, Boca Raton, Fla, USA, 2nd
  • Kafi, M., Iami, A.L., and Ahmadi, M., 2006.Salinity effect on germition propetie Kochia scopari. Asian Journal of Plant Sciences, 5: 71- 750.
  • Kloke, A., 1980. Richtwerte 80. Orientierungsdaten für tolerierbare gesamtgehalte eniger elemente in Kulturboden, Milt. VDULUFA, 2:9-11.
  • Lone, M.I., Li, H., Zhen. P.J. and Yang, X., 2008. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. Journal of Zhejiang University Science Bulletin, 9: 210-220.
  • Malek Mohammadi, L. and Mirzavash Azar, S., 2012. Gathering, Identification, Medicinal Utilization and Domestication of Some Wild Edible Plants in Ghasemloo Valley, West Azerbaijan, Iran. Journal of Rangeland Science, 2: 521-534.
  • Maleki, T. and Akhani, H., 2018. Ethnobotanical and ethnomedicinal studies in Baluchi tribes: A case study in Mt. Taftan, southeastern Iran. Journal of Ethnopharmacology, 217: 163-177.
  • Michalak, A., 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Journal of Environment Study, 15 (4): 523- 530.
  • Michalak, A., 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental 15: 523-530.
  • Murch, S.J., Haq, K., Rupasinghe, H.Q. and Saxena, P.K., 2003. Nickel contamination affects growth and secondary metabolite composition of St. John's wort (Hypericum perforatum ). Environmental and Experimental Botany.49 (3): 251-257.
  • Noori, M., Malayeri, B.E. and Jafari, M., 2009. Determination of fluoride its effects on flavonoids in some legumes. Toxicol. Journal of Environment. Chemichal, 91 (3): 409-418.
  • Okem, A., Southway, C., Stirk, W.A., Street R.A., Finnie, J.F. and Van Staden, J., 2014. Heavy metal contamination in South African medicinal plants: A cause for concern. South African Journal of Botany, (93): 125-130.
  • Pais, I. and Jones, J.B., 1997. The handbook of trace elements. St. Lucie press. Boca Raton, Florida. 223 pages.
  • Paivoke, A.E.A., 2002. Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum. Environmental and Experimental Botany, 48: 61–73.
  • Palizban, A.A., Asghari, G.H., Badiee, A., Mardani Nafchi, H. and Kazemi, A.R., 2016. Determination of contamination of Lead and Cadmium in Canola and safflower in around of Isfahan Still Company (ESCO) and Compare this pollution with oil extracted from them. Iranian Journal of Shahrekord University of Medical Sciences, 18(5): 94-102.
  • Prasad, A., Kumar, S., Khaliq, A. and Pandey, A., 2011. Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum ). Biology and Fertility of Soils, 47 (8): 853- 861.
  • Prasad, A., Singh, A. K., Chand, S., Chanotiya, C. and Patra, D., 2010. Effect of chromium and lead on yield, chemical composition of essential oil and accumulation of heavy metals of mint species. Communications in Soil Science and Plant Analysis, 41(18): 2170-2186.
  • Pugh, R.E., Dick, D.G. and Fredeen, A.L., 2002. Heavy metal (Pb, Zn, Cd, Fe and Cu) contents of plant foliage near the Anvil Range lead/zinc mine, Faro. Journal of Yukon Territory Ecotoxicol, 55: 273–279.
  • Qin, D., Chen, M.X., Zhou, R., Chao, Z.Y., Zhu, Z.W., Shao, G.S.H. and Wang, G.M., 2009. Cd toxicity and accumulation in rice plants vary with soil nitrogen status and their genotypic difference can be partly attributed to nitrogen uptake capacity. Journal of Rice Science, 16: 283-291.
  • Rhizophoulou, S. and Diamantoglon, S., 1991. Water stress induced diurnal variatiobin in leaf water relation stomatal conductance, soluble, sugar, lipids and essential oil content of Origanum majoranol. Journal of Horticultural Sciences, 66: 119 – 25.
  • Roy, S., Bhattacharyya P.and Gosh, A.K., 2004. Influence of toxic metals on activity of acid and alkaline phosphate enzymes in metal contaminated landfill soils. Australian Journal of Soil Research, 42: 339-344.
  • Sakihama, Y. and Yamasaki, H., 2002. Lipid peroxidation induces by phenolics in cinjunction with aluminium ions. Journal of Biologia Plantarum, 45: 249- 254.
  • Sato, A., Takeda, H., Oyanagi, W., Nishihara, E. and Murakami, M., 2010. Reduction of cadmium uptake in spinach (spinasiaoleracea L) by soil amendment with animal waste compost. Journal of Hazardous Materials, 173: 705-709.
  • Senobari, Z., Jafari, N. and Ebrahimzadeh, M.A., 2014. Effect of nickel and pH on antioxidant activity, and total phenolic and flavonoid contents of Cladophora glomerata. Iranian Journal of Environmental Science and Technology, 16(2):129-138.
  • Shibata, S., 2000. A drug over the millennia and pharmacognosy: chemistry pharmacology of licorice. Pharmaceutical Society of Japan, 120: 849-862.
  • Siddiqui, F., Krishna, S. K., Tandon, P. and Srivastava, S., 2013. Arsenic accumulation in Ocimum spp. and its effect on growth and oil constituents. Acta Physiologiae Plantarum, 35(4), 1071-1079.
  • Tabrizi, L. and Kochaki, A.R., 2014. Ecological Medicinal Plants, Sustainable Production and Operation. Tehran University press, 442p.
  • The British Pharmacopoeia. Vol. 2. London: British Pharmacopoeial Commission; 2009, pp: 1 - 3.
  • Tiryakioglu, M., Eker, S., Ozkutlu, F., Husted, S. and Cakmak, I., 2006. Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology, 20: 181-189.
  • Yousefi, K., Riahi-Madvar, A. and Baghizadeh, A., 2015. Investigation of the effects of Ag and Cu elicitros on flovone synthase Igene expression and some biochemical paremeters on Cuminum cyminum endemc to Iran. Iranian of Journal of Biology: 210-223.
  • Zheljazkov, V.D., Craker, L.E. and Xing, B., 2006. Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Journal of Environmental and Experimental Botany, 58 (1): 9-16.
  • Zheljazkov, V.D., Jelizkov, E.A., Kovachev, and Dzhurmanski, A., 2008. Metal uptake bymedicinal plant species grown in soils contaminated by a smelter. Journal of Environmental and Experimental Botany, 64(3):207-216.
  • Zornoza, P.V., Estebane, F., Pascual, R. and Carpena, R., 2002. Cadmium-stress in nodulated white lupin: strategies to avoid toxicity. Journal of Plant Physiology and Biochemistry, 40: 1003-1009.