ارزیابی تغییرات پوشش سطح زمین و تخریب اراضی با استفاده از تکنیک سنجش از دور در شمال استان اصفهان (مطالعه موردی: کاشان، آران و بیدگل)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای گروه مدیریت و کنترل بیابان، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان، کاشان، ایران

2 دانشیار، گروه مدیریت و کنترل بیابان، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان، کاشان، ایران

3 استاد، گروه مدیریت و کنترل بیابان، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان، کاشان، ایران

10.22092/ijrdr.2022.127221

چکیده

     بیابان‌زایی یک تهدید جدی اکولوژیکی، زیست‌محیطی و اجتماعی - اقتصادی برای جهان است و نیاز مبرمی به توسعه روشی منطقی و قابل تکرار برای ارزیابی آن در مقیاس‌های مختلف وجود دارد. ازاین‌رو، در این مقاله تغییرات پوشش و بیابان‌زایی منطقه کاشان، آران و بیدگل در شمال اصفهان با استفاده از داده‌های لندست TM5 و OLI8 بررسی شد. بر این اساس، در این پژوهش شاخص تفاوت نرمال شده گیاهی (NDVI)، شاخص اندازه دانه سطحی خاک TGSI)) و آلبدو سطح زمین به‌عنوان شاخص‌هایی برای نمایش شرایط سطح زمین از نظر پوشش گیاهی، الگوی چشم‌انداز و انعکاس انتخاب شدند. از رویکرد درخت تصمیم (DT) برای ارزیابی تغییر پوشش زمین و بیابان‌زایی منطقه مورد مطالعه در سال‌های 1995-2020 میلادی (1374- 1399 شمسی) استفاده شد. تغییرات زمانی نشان‌دهنده افزایش روند NDVI، TGSI و آلبدو طی این دوره بود. توزیع مکانی NDVI نشان داد که مقادیر بیشتر از 5/0 تنها در بخش کوچکی از غرب و جنوب‌غرب مشاهده شد، در حالی که مقادیر بالای TGSI و آلبدو سطح وسیعی از منطقه مورد مطالعه را به خود اختصاص دادند. همچنین بین سه شاخص ذکرشده همبستگی در سطح 95% وجود داشت (R=0.99). نتایج نشان داد که بیابان‌زایی در منطقه مورد مطالعه در حال افزایش است، به‌طوری‌که شدت بیابان‌زایی سال‌های 1995 تا 2020 در کلاس‌های بدون بیابان‌زایی کم، متوسط و شدید افزایشی بود. طبقه بیابان‌زایی زیاد 75/1420 کیلومتر مربع (54/13%) کاهش داشت، در حالی که بیابان‌زایی شدید تقریباً 8/1388 کیلومتر مربع (23/13%) افزایش یافت. بیشترین مقادیر NDVI در منطقه غیربیابانی و طبقه بیابان‌زایی کم تعیین شد، در حالی که بیشترین مقادیر TGSI و آلبدو در طبقات بیابان‌زایی زیاد و شدید بود.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of land cover change and desertification using remote sensing technology in north of Isfahan province (Case study: Kashan, Aran and Bidgol)

نویسندگان [English]

  • Meisam Aramesh 1
  • abbas ali vali 2
  • Abolfazl Ranjbar 3
1 Ph.D. Student of Desert Management and Control, University of Kashan, Kashan, Iran
2 Associate Professor, Department of Desert Sciences Engineering, Faculty of Natural Resources and Geosciences, University of Kashan, Kashan, Iran.
3 Professor of Desert Management and Control, University of Kashan, Kashan, Iran
چکیده [English]

Desertification is a serious ecological, environmental, and socio-economic threat to the world, and there is a pressing need to develop a reasonable and reproducible method to assess it at different scales. Therefore, in the present paper, changes in cover and desertification of Kashan, Aran and Bidgol regions in the north of Isfahan were developed using Landsat ETM and OLI data. According to this research, NDVI (Normalized Difference Vegetation Index), TGSI (Topsoil Grain Size Index), and land surface albedo were selected as indicators for representing land surface conditions from vegetation biomass, landscape pattern, and reflection. A Decision Tree (DT) approach was used to assess the land cover change and desertification of the study area from 1995-2020. Temporal changes indicated an increase in NDVI, TGSI, and albedo trends during this period. The spatial distribution of NDVI showed that values greater than 0.5 were observed only in a small part of the west and southwest, while high values of TGSI and albedo occupied a large area of the study area. There was also a correlation between the above three indicators at 95% (R = 0.99). The results also showed that desertification is increasing in the study area, so that the intensity of desertification from 1995 to 2020 in classes without desertification was low, medium, and severe. The high desertification class decreased by 1420.75 square kilometers (13.54%), while severe desertification increased by approximately 1388.8 square kilometers (13.23%). The highest NDVI values were found in the non-desert area and the low desertification class, while the highest TGSI and albedo values were found in the high and severe desertification classes.

کلیدواژه‌ها [English]

  • Land cover
  • desertification dynamic
  • topsoil grain size index
  • Decision Tree (DT) approach
  • Adab, H., Amirahmadi, A. and Atabati, A., 2015. Relating Vegetation Cover with Land Surface Temperature and Surface Albedo in Warm Period of Year Using MODIS Imagery in North of Iran. Physical geography research, 46(4): 419-434 (In Persian).
  • Batoli, H., 2018. Introduction of the flora, life form and chorology of Aran & Bidghol deserts area in Isfahan province. Journal of Plant Research (Iranian Journal of Biology), 31 (2): 258-278 (In Persian).
  • D'Odorico, P., Bhattachan, A. and Davis, K.F., 2013. Global desertification: Drivers and feedbacks. Advances in Water Resources, 51: 326-344.
  • Fu, H., Wang, Y. and Wu, C., 2002. Effects of grazing on soil physical and chemical properties of Alxa desert grassland. Journal of Desert Research. 22: 339-343.
  • Fakhrabadi, A., Entezari, A. and Bazrafshan, O., 2014. Assess the Drought Situation In Kashan Desert Of Kashan And Aran Shhrstan Hay Bidgol (Nushabad) Using The Standardized Precipitation Index (Spi).   Geographical journal of territory, 11(42): 77-86 (In Persian).
  • Fakhrabadi, A., Salighe, M., Akbar,i M. and Nasserzadeh, M.H., 2019. Kashan Plain Desertification Level; Iranian Model of Desertification Potential Assessment. Geographical Researches, 34 (4): 527-538 (In Persian).
  • Guo, B., Zang, W.Q., Luo, W., Wen, Y., Yang, F., Han, B.M., Fan, Y.W., Chen, X., Qi, Z., Wang, Z., Chen, S. andYang, X., 2020. Detection model of soil salinization information in the Yellow River Delta based on feature space models with typical surface parameters derived from Landsat8 OLI image. Geomatics, Natural Hazards and Risk, 11(1):288–300.
  • Hadeel, A.S., Mushtak, T.J. and Chen, X., 2010. Remote sensing and GIS application in the detection of environmental degradation indicators. Geo-spatial information Science, 14: 39-47.
  • Hou, W., Gao, J., Wu, S. and Dai, E., 2015. Interannual Variations in Growing-Season NDVI and Its Correlation with Climate Variables in the Southwestern Karst Region of China, Remote Sensing, 7: 11105-11124.
  • Lamchin, M., Lee, J.Y., Lee, W.K., Lee, E.J., Kim, M., Chul-Hee, L., Choi, H.A. and Kim, S.R., 2015. Assessment of Land Cover change and Desertification using Remote Sensing Technology in a local region of Mongolia. Advances in Space Research, 57(1):64-77.
  • Lamchin, M., Lee, W.K., Jeon, S.W., Lee, J.Y., Song, C., Piao, D., Lim, C.H., Khaulenbek, A. and Navaandorj, I., 2017. Correlation between Desertification and Environmental Variables Using Remote Sensing Techniques in Hogno Khaan, Mongolia. Sustainability, 9(4):581.
  • Li, S.G., Harazono, Y. and Oikawa, T., 2000. Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agricultural and Forest Meteorology, 102: 125-137.
  • Liang, S.L., 2001. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sensing Environment, 76: 213-238.
  • Liu, F., Chen, Y., Lu, H. and Shao, H., 2017. Albedo indicating land degradation around the Badain Jaran Desert for better land resources utilization. Science of the Total Environment, 578: 67–73.
  • Middleton, N. and Thomas, D.S.G., 1997. World Atlas of Desertification. Arnold. 182p.
  • Owrangi, M. A., Adamowski, J., Rahnemaei, M., Mohammadzadeh, A. and Sharifan, R. A., 2011. Drought Monitoring Methodology Based on AVHRR Images and SPOT Vegetation Maps. Journal of Water Resource and Protection, 3: 325-334.
  • Ranjbar, A., Valia, A., Mokarramb, M. and Taripanahc, F., 2020. Analyzing of the spatio-temporal changes of vegetation and its response to environmental factors in north of Fars province, Iran. Journal of Remote sensing & GIS, 11(4): 61-82 (In Persian).
  • Ranjbar, A., Vali, A., Mokarram, M. and Taripanah, F., 2020. Investigating variations of vegetation: climatic, geological substrate, and topographic factors—a case study of Kharestan area, Fars Province, Iran. Arab J Geosci, 13: 597.
  • Rogan, J., Franklin, J. and Roberts, D.A.A., 2002. Comparison of methods for monitoring multi temporal vegetation change using Thematic Mapper imagery. Remote Sens Environ, 80: 143-156.
  • Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W., 1974. Monitoring vegetation system in the great plains with ERTS. Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Greenbelt, USA, NASA SP, 351: 3010-3017.
  • Smith, R.B., 2010. The heat budget of the earth’s surface deduced from space. available on http://www.yale.edu/ceo/Documentation/ceo_faq.html.
  • Turan, I.D., Dengiz, O. and Ozkan, B., 2019. Spatial assessment and mapping of soil quality index for desertification in the semi-arid terrestrial ecosystem using MCDM in interval type-2 fuzzy environment. Computers and Electronics in Agriculture, 182:104933.
  • UNCCD (United Nations Convention to Combat Desertification)., 2010. Recommendations and Conclusions of the African Regional Conference Preparatory to the First Session of the Committee for the Review of the Implementation of the United Nations Convention to Combat Desertification (UNCCD–CRIC1); Secretariat of the Convention to Combat Desertification: Windhoek, Namibia.
  • Wei, H.S., Wang,.J.L., Cheng, K., Li, G., Ochir, A., Davaasuren, D. and Chonokhuu, S., 2018. Desertification information extraction based on feature space combinations on the Mongolian plateau. Remote Sensing, 10(10):1614.
  • Xiao, J., Shen, Y. and Tateishi, R., 2006. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. International Journal of Remote Sensing, 27: 2411-2422.
  • Ya, Z., Xue, S., WangWen, R.J., Chun, L.Z., Qing, L. and Jiao, L., 2018. Monitoring of aeolian desertification on the Qinghai-Tibet Plateau from the 1970s to 2015 using Landsat images. Sci Total Environ, 620:1648–1659.
  • Zhang, J.H., Feng, Z.M., Jiang, L.G. and Yang, Y.Z., 2015. Analysis of the Correlation between NDVI and Climate Factors in the Lancang River Basin. J. Nat. Res, 30: 1425–1435.
  • Zhao, H.L., Zhao, X.Y. and Zhou, R.L., 2005. Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. Journal of Arid Environ, 1: 1-15.
  • Zhu, Z., Liu, S. and Di, X., 1989. Desertification and its Rehabilitation in China (Beijing: China Science Press). 1989. NASA’s Giovanni project.