همکاری با انجمن علمی مدیریت و کنترل مناطق بیابانی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم مرتع، گروه مرتع‌داری، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار، گروه مرتع‌داری، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استادیار، گروه مرتع‌داری، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 استادیار پژوهش، مرکز تحقیقات کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

10.22092/ijrdr.2024.130967

چکیده

مقدمه
با توجه به افزایش استفاده از سوخت‌های فسیلی و کودهای شیمیایی، مقدار ورود ترکیبات نیتروژن‌دار به جو به‌ویژه در مناطق صنعتی افزایش یافته است. رسوب نیتروژن، پیامد افزایش میزان ورودی نیتروژن به اتمسفر است که می‌تواند تهدیدکننده اکوسیستم‌ها باشد و بر خصوصیات شیمیایی خاک، میکروارگانیسم‌ها و فعالیت آنها مؤثر واقع شود. هدف از این پژوهش، مطالعه تغییرات خصوصیات بیوشیمیایی خاک با توجه به مقادیر احتمالی افزایش ته‌نشست نیتروژن در اثر فعالیت‌های مخرب انسانی است.
 
روش تحقیق
بدین منظور بذر گونه یونجه همدانی (Medicago Sativa L.) به عنوان یک گیاه معرف تثبیت‌کننده نیتروژن انتخاب و به‌صورت طرح بلوک کاملاً تصادفی در 36 گلدان حاوی خاک مرتع مورد نظر کشت گردید. 2 ماه پس از جوانه‌زنی بذرها در گلدان‌ها، شش تیمار (شاهد، 150،120،90،60،30 کیلوگرم در هکتار) نیترات آمونیوم محلول در آب، طی دوره‌ای 75 روزه، در 6 تکرار بر روی خاک اسپری شد. سپس در محیط آزمایشگاه، برخی خصوصیات بیوشیمیایی خاک (شامل اسیدیته، هدایت الکتریکی، فسفر قابل جذب، نیتروژن کل، کربن آلی و پتاسیم تبادلی به همراه بیوماس و تنفس میکربی) و شاخص‌های وزن و عمق ریشه اندازه‌گیری گردید. تجزیه‌وتحلیل داده‌ها با استفاده از روش تجزیه واریانس و مقایسه میانگین‌ها با استفاده از آزمون دانکن انجام شد.
 
نتایج و بحث
 نتایج نشان داد که با افزایش نیتروژن حاصل از ته‌نشست تغییرات معنی‌داری در فاکتورهای مورد بررسی بوجود آمد. با افزایش سطح رسوبات نیترات آمونیوم به 60 و 90 کیلوگرم در هکتار در سال، با وجود افزایش معنی‌دار (05/0 p ˂) مقادیر کربن آلی و نیتروژن کل خاک، سبب کاهش معنی‌دار سایر خصوصیات بیوشیمیایی اندازه‌گیری شده خاک می‌گردد (05/0p ˂). با افزایش بیش از حد ته‌نشست نیتروژن و برهم خوردن تعادل عناصر، توقف رشد و از بین رفتن اندام زیرزمینی مشاهده شد. با افزایش ته‌نشست شبیه‌سازی شده در خاک تا سطح ۶۰ کیلوگرم، میانگین تنفس و بیوماس میکروبی افزایش یافت. اما در سطوح بالاتر ته‌نشست نیتروژن، تنفس و بیوماس میکروبی کاهش یافت و به کمتر از میانگین تنفس و بیوماس گلدان‌های شاهد رسید.
 
نتیجه‌گیری
بر این اساس، استفاده از گیاه یونجه در پروژه‌های اصلاح مراتع ییلاقی و احیا پوشش گیاهی به منظور جذب نیتروژن معدنی ته‌نشست شده مازاد بر ظرفیت نگهداشت خاک و پیامدهای منفی آن و ایجاد ناحیه ریشه‌ای مناسب برای فعالیت جامعه میکروبی خاک، توصیه می‌گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the effect of atmospheric nitrogen deposition on annual alfalfa roots and biochemical properties of Rangeland soil

نویسندگان [English]

  • Mohammad Daneshi 1
  • Mojgansadat Azimi 2
  • Hamid Niknahad Gharehmakhor 3
  • Elham Faghani 4

1 PhD. Student in Range Management, Department of Range Management, Faculty of Range and Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Associate Prof., Department of Range Management, Faculty of Range and Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Assistant Prof., Department of Range Management, Faculty of Range and Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 Assistant Professor, Research Center of Agriculture and Natural Resources, Agricultural Research, Education and Extension Organization, Gorgan, Iran

چکیده [English]

Background and objectives
Due to the increase in the consumption of fossil fuels and chemical fertilizers, especially nitrogen-containing fertilizers, the entry of nitrogen into the cycle of ecosystems has been more than normal.Nitrogen deposition as a consequence of increasing nitrogen input to the atmosphere, can be a threat to ecosystems. It can affect soil properties, soil microorganisms and their activities, vegetation and animals. The aim of the present study is to investigate the effects of deposition of different rates of atmospheric nitrogen on the biochemical properties of a summer rangeland's soil.
 
Methodology
For this purpose, the seeds of Medicago sativa were planted in 36 pots containing rangeland soil in a completely randomized block design.  Two months after seed germination in pots, six Nitrogen treatments included control,30, 60,90,120 and 150 kg ammonium nitrate/ha which dissolved in water were applied in 6 replications during a period of 75 days. At the end of experiment, some soil biochemical properties (acidity, electrical conductivity, absorbable phosphorus, total nitrogen, organic carbon and exchangeable potassium along with biomass and microbial respiration) and Root weight and depth factors were measured.  Data analysis was done using analysis of variance method and mean comparison was done using Duncan's test.
 
Results
The results demonstrated that increasing the level of ammonium nitrate deposition to 60 and 90 kg per hectare per year, despite the significant increase (p < 0.05) of organic carbon and total soil nitrogen, causes a significant decrease in other measured biochemical properties of the soil (p < 0.05). An increase in nitrogen deposition in the early stages may be partially responsible for root growth, but with nitrogen saturation in the soil and the occurrence of nitrate leaching, as well as the loss of soil fertility, unfavorable conditions for root growth are provided. With the increase of nitrogen deposition in the soil, up to the level of 60 kg /ha, the average respiration and microbial biomass increased, But at higher levels of  nitrogen deposition, respiration and microbial biomass decreased.
Conclusion
In case of an increase in mineral nitrogen deposition in the studied area, it is recommended to use the Medicago sativa in the improvement of vegetation restoration projects of summer rangelands to absorb the deposed mineral nitrogen in excess of the soil holding capacity, its alleviate negative consequences and creating a suitable root zone for the the  activity of soil microbial.

کلیدواژه‌ها [English]

  • Deposition
  • Ammonium nitrate
  • Rangeland Improvement
  • Summer Rangelands
Anderson, C.R., Condron, L.M., Clough, T.J., Fiers, M., Stewart, A., Hill, R.A. and Sherlock, R.R., 2011. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54: 309– 320. https://doi.org/10.1016/j.pedobi.2011.07.005
 Arrekhi, A., Niknahad Gharmakher, H., Bachinger, J., Bloch, R., Hufnagel, J., 2021. Forage Quality of Salsola turcomanica (Litv) in Semi-arid Region of Gomishan, Golestan Province, Iran. Journal of Rangeland Science, 11(1): 76-88. (In Persian)
Chen, Y. L., Xu, Z. W., Xu, T. L., Veresoglou, S. D., Yang, G. W. and Chen, B. D., 2017. Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities. Journal of Soil Biology and Biochemistry. 115: 233–242.  https://doi.org/10.1016/j.soilbio.2017.08.024  
Chen, ch., Xinli, ch. and Han, Y.H., 2023. Mapping N deposition impacts on soil microbial biomass across global terrestrial ecosystems. Geoderma. 433: 116429. https://doi.org/10.1016/j.geoderma.2023.116429
Cornell, S.E., Jickells, T.D. and Cape, J.N., 2003. Organic nitrogen deposition on land and coastal environments, a review of methods and data. Journal of Atmospheric Environment. 37: 2173–2191. https://doi.org/10.1016/s1352-2310(03)00133-x
Cunningham S.D., Anderson., T.A.,  Schwab,  A.P. and C Hsu, F., 1996. Phytoremediation of  soils contaminated with organic pollutants. Adv Agron. 56:56– 114. https://doi.org/10.1016/s0065-2113(08)60179-0
De Vries, W. and Schulte-Uebbing, L., 2019. Atlas of Ecosystem Services. Springer, 189p. https://doi.org/10.1007/978-3-319-96229-0_29
Du, E., 2017. Integrating species composition and leaf nitrogen content to indicate effects of nitrogen deposition. Journal of Environmental Pollution. 221: 392-397. https://doi.org/10.1016/j.envpol.2016.12.001
Eisenhofer, R., Minich, J. J., Marotz, C., Cooper, A., Knight, R. and Weyrich, L. S., 2019. Contamination in low microbial biomass microbiome studies: issues and recommendations. Journal of Trends Microbial, 27: 105–117. https://doi.org/10.1016/j.tim.2018.11.003
Erisman, J. W. and Draaijers, G., 2003. Deposition to forests in Europe, most important factors influencing dry depositionandmodels used for generalisation. Environmental Pollution. 124: 379–388. https://doi.org/10.1016/s0269-7491(03)00049-6
Fajri, A, 2001. Effects of inoculation and different amount of nitrogen on the growth and nodulation of alfalfa (Medicago sative L.) cultivars. Journal of Agriculture science. Vol. 32: No.2, 2001.
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N. and Reis, S., 2013. The global nitrogen cycle in the twenty-first century. Journal of Biological Sciences, 368(1621): 130-165. https://doi.org/10.1098/rstb.2013.0164
Gallagher, M., Fontan, J., Wyers, P., Ruijgrok, W., Duyzer, J. and Hummelshøj, P., 1997. Biosphere-Atmosphere Exchange of Pollutants and Trace Substances. Springer, 199p. https://doi.org/10.1007/978-3-662-03394-4_3
Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P. and Sutton, M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Journal of Science, 320(5878): 889-892. https://doi.org/10.1126/science.1136674
Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., Asner, G.P., Cleveland, C.C., Green, P.A., Holland, E.A., Karl, D.M., Michaels, A.F., Porter, J.H., Townsend, A.R. and Vorosmarty, C.J., 2004. Nitrogen cycles, past, present, and future. Biogeochemistry. 70: 153-226. https://doi.org/10.1007/s10533-004-0370-0
Gomez-Casanovas, N., Hudiburg, T. W., Bernacchi, C. J., Parton, W. J. and DeLucia, E. H., 2016. Nitrogen deposition and greenhouse gas emissions from grasslands: uncertainties and future directions. Global Change Biology, 22: 1348–1360. https://doi.org/10.1111/gcb.13187
Guan, Bo., Xie, B., Yang, Sh., Hou, A., Chen, M. and Han, G., 2019. Effects of five years’ nitrogen deposition on soil properties and plant growth in a salinized reed wetland of the Yellow River Delta. Ecological Engineering, 136: 160-166. https://doi.org/10.1016/j.ecoleng.2019.06.016
Gunther, T., Dornberger, U., and  Fritsche, W., 1996.  Effects of ryegrass on biodegradation of  hydrocarbons in soil. Chemosphere, 33: 203- 215. https://doi.org/10.1016/0045-6535(96)00164-6
Gundersen, P. and Rasmussen, L., 1990. Nitrification in Forest Soils: Effects from Nitrogen Deposition on Soil Acidification and Aluminum Release. In: Ware, G.W. (Ed.), Reviews of Environmental Contamination and Toxicology. Springer, pp. 1–45. https://doi.org/10.1007/978-1-4612-3366-4_1
Jamieson, M.A., Quintero, C. and Blumenthal, D.M., 2013. Interactive effects of simulated nitrogen deposition and altered precipitation patterns on plant allelochemical concentrations. Journal of chemical ecology, 39(9): 1204-1208. https://doi.org/10.1007/s10886-013-0340-x
Kaykhah,E. and Niknahad Gharmakher, H., 2015. Impact of an alternative system on some soil properties as compared with forest and cropland systems. Journal of Water and Soil Conservation, Vol. 22(2):127-142 )in Persian(.
Liu, J., Wu, N., Wang, H., Sun, J., Peng, B., Jiang, P. and Bai, E., 2016. Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter. Journal of Ecology, 97(7): 1796-1806. https://doi.org/10.1890/15-1683.1
Magill, A.H., Aber, J.D., Currie, W.S., Nadelhoffer, K.J., Martin, M.E., McDowell, W.H., Melillo, J. M. and Steudler,P., 2004. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts,USA. Forest Ecology and Management. 196: 7–28. https://doi.org/10.1016/j.foreco.2004.03.033
Marvie Mohajer, M.R., 2007. Silviculture. Tehran University Press, 387p (In Persian).
Mao, Q., Lu, X., Mo, H., Gundersen, P. and Mo, J., 2018. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Science of the Total Environment, 610: 555-562. https://doi.org/10.1016/j.scitotenv.2017.08.087
Minocha, R., Long, S., Magill, A. H., Aber, J. and McDowell, W. H., 2000. Foliar free polyamine and inorganic ion contentin relation to soil and soil solution chemistry in two fertilized stands at the Harvard Forest, Massachusetts. Journal of Plant and Soil. 222: 119–137. https://doi.org/10.1023/a:1004775829678
Noiraei, As., jalilvan, H., hojjati, M. and alavi, S.A., 2021.Simulation of Nitrogen Deposition (Nitrogen Addition Experiments) Impact on Soil Properties in Pine Radiata Stand. Ecology of Iranian Foressts, 9(17): 75-85.)in Persian(. https://doi.org/10.52547/ifej.9.17.75
Nordin, A., Strengbom, J., Witzell, J., Nasholm, T. and Ericson, L., 2005. Nitrogen deposition and the biodiversity ofboreal forests, Implications for the nitrogen critical load. AMBIO: A Journal of the Human Environment. 34: 20–24. https://doi.org/10.1579/0044-7447-34.1.20
Quinn Thomas, R., Canham, C. D., Weathers, K. C., and Goodale, C. L., 2010. Increased tree carbon storage in response to nitrogen deposition in the US. Journal of Nature Geoscience. 3: 13–17. doi: 10.1038/ngeo721
Tafazoli, M., jalilvand, H., hojati, M. and Lameresdorf, M., 2017. The effects of simulated nitrogen deposition on soil chemical properties in maple plantation stand. Journal of Environmental Sciences, 15(2): 39-54 (In Persian). https://doi.org/10.1007/s42729-019-00048-5
Xuan, W., Ting, W.X., Zhu, L.C. and Mei, N.Y., 2018. Nitrogen deposition changes the distribution of key plant species in the meadow steppe in Hulunbeier, China. The Rangeland Journal, 40(2): 129-142. https://doi.org/10.1071/rj16075
Zhang, G., Chen, Z., Zhang, A., Chen, L. and Wu, Z., 2014. Influence of climate warming and nitrogen deposition on soil phosphorus composition and phosphorus availability in a temperate grassland. China. Journal of Arid Land. 6: 156-163. https://doi.org/10.1007/s40333-013-0241-4
Zhou, S., Xue, K., Zhang, B., Tang, L., Pang, Z. and Wang, F., 2021. Spatial patterns of microbial nitrogen-cycling gene abundances along a precipitation gradient in various temperate grasslands at a regional scale. Journal of Geotherma, 404:115236. https://doi.org/10.1016/j.geoderma.2021.115236
Zhu, X., Zhang, W., Chen, H. and Mo, J., 2015. Impacts of nitrogen deposition on soil nitrogen cycle in forest ecosystems: A review. Acta Ecologica Sinica. 35: 35-43. https://doi.org/10.1016/j.chnaes.2015.04.004